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Summary

This thesis aims to develop the theory of height bounds between points on
an elliptic curve E and corresponding points on n-descendant curves Cn. We

concentrate on 2- and 4-descendants and, in general, work over Q.

We start by discussing the basics of descent and explain that the objects ob-

tained can be viewed as n-coverings of E. We explain the theory of how height
comparisons can be made between E and Cn and give a crude bound using the

theory of resultants.

The majority of the work then splits into two parts; 2-coverings, which
amounts to the study of binary quartic forms, and 4-coverings, which amounts

to the study of quadric intersections in P3. In each section, after discussing the
known theory, we define a bound as the sum of local contributions εp, calculated

at all primes and ∞. We discuss some properties of the εp and show how they
can be computed. A slightly ‘brute force’ approach is required at p = ∞ and the

primes 2 and 3 require special consideration. We give an algorithm which has
been implemented using MAGMA and also give some examples.

The study of 4-coverings gives the more powerful bound, so we investigate

this more deeply, showing that the best bounds can be found at the ‘centre’ of
a certain graph. Section 4 then investigates this graph in detail for curves with

multiplicative reduction, which is in some ways the most complicated case. We
then give a few more examples and directions for further study.
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1 Introduction

Elliptic curves date back to Diophantus in 250AD and were initially studied by
mathematicians trying to find solutions to puzzles involving sums of cubes, areas

of right angled triangles or stacks of cannonballs (to name but a few). Many people
still study them for practical purposes such as elliptic curve cryptography, but I

think there is a deeper reason why they continue to get so much attention. This rea-

son is that they are still so mysterious when compared to other arithmetical objects.

To explain, we must understand that one of the most important problems in
studying a particular curve is being able to describe its rational points. In some

sense everything is known if the curve has genus 0; i.e. we can parametrise the
solutions to show there are either no rational points or an infinite number. If a

curve has genus 2 or higher, then a theorem of Faltings tells us that there are only
a finite number of rational points. But for elliptic curves (which have genus 1), we

cannot say any such thing. We can realise the rational points as a finitely generated
abelian group (by the Mordell-Weil Theorem), but in general we have no way of

determining whether there are any (non-trivial) rational points at all.

It is somewhat surprising that so little is known, since they have far more
apparent structure than other Diophantine equations. They also exist in an area of

mathematics where number theory, analysis and algebraic geometry converge, so
we should have more angles for attack in trying to understand them.

We want to write down explicitly the group of rational points on an elliptic

curve E and this group is given by the Mordell-Weil Theorem as

E(Q) � Zr ⊕ T,

for T the torsion subgroup and an integer r known as the rank. Theorems of Nagell

and Lutz and of Mazur explain the torsion subgroup and this is in some sense dealt
with. But that still leaves two problems; to determine the rank and to write down

the generators of E, i.e. the set of r points which generate the infinite part of E(Q).

Methods have become fairly effective using L-series to compute r, although
for r > 1 they rely on unproved parts of the Birch and Swinnerton-Dyer Con-

jecture. To find the generators, there is a good method using Heegner points for
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r = 1, but for higher ranks the best methods involve quadratic sieves modulo

prime powers and various p-adic arguments. These methods have been made fast,
but they are still exponential in the height of the point being searched for, so they

eventually become impractical.

What we will instead investigate is the possibility of searching on n-descendant
curves Cn, known as n-coverings of E. The term ‘descent’ dates back to Fermat

(who approached the problem of 2-descent) and it involves algorithms for finding
what is called the n-Selmer group of E. This group is written as S n(E) and

its elements are n-coverings, which we can view as genus one curves that are
equivalent to E over Q and have points everywhere locally (i.e. Cn(Qp) , ∅ for all

p). It turns out that we are then interested in those elements of S n(E) that have a

point over Q, since these correspond to generators of E. This then allows us to get
a bound for the rank of E.

The height of a point is closely related to how much time it takes to search

for it. It is known that points on n-coverings should have smaller height than
their image on the elliptic curve; in fact the height h(qn) of a point on Cn should

be approximately h(P)/(2n), for P the corresponding point on E. We know that
constants exist bounding the difference between these two heights and computing

these bounds precisely will be the main aim of this thesis. Having this bound on
the difference is useful; for example, there are reasons why we may know that

there should be a point on E of height h(P) < 500, say. This point would be
impractical to search for directly, but it means than we would only need to search

up to a height of about 250/n on an n-covering. Searching on a 4-covering would
then be quite feasible and the fact that these heights are logarithmic makes the

improvement considerable.

In fact only 2-,3- and 4-descent work efficiently, although work has been
done by Fisher on 6- and 12-descent ( [Fis08] ) and by Stamminger on 8-descent

( [Sta05] ). The group S 2(E) consists of binary quartics:

C2 : y2 = ax4 + bx3z + cx2z2 + dxz3 + ez4

8



and S 4(E) consists of quadric intersections in P3:

C4 : a11x2
1 + a12x1x2 + a13x1x3 + a14x1x4 + a22x2

2 + a23x2x3 + a24x2x4+

a33x2
3 + a34x3x4 + a44x2

4 = 0,

b11x2
1 + b12x1x2 + b13x1x3 + b14x1x4 + b22x2

2 + b23x2x3 + b24x2x4+

b33x2
3 + b34x3x4 + b44x2

4 = 0.

To demonstrate that the points are smaller on these curves than on E, take the

elliptic curve given by
y2 = x3 − 59643.

We get a single binary quartic from 2-descent:

y2 = −15x4 + 39x3z + 9x2z2 + 33xz3 − 21z4

and a single quadric intersection from 4-descent1:

4x1x2 + 2x1x3 − 2x2x3 − 2x2x4 + x2
3 − 2x3x4 + 2x2

4 = 0, (1)

x2
1 − 2x1x2 − 3x2

2 − 2x2x3 − 2x2x4 + 4x2
3 + x2

4 = 0.

The quadric intersection contains the point (−1 : 1 : 0 : 2), which corresponds to
(119, 4725, 40) on the binary quartic and(

62511752209
9922500

,
15629405421521177

31255875000

)
on E. This is the smallest point on E of infinite order, but would have taken a very

long time to find directly. We will investigate exactly how the sizes of these points
change by examining the maps from C4 and C2 down to E.

When trying to discover things about n-coverings over Q, we will work

over Qp instead of directly over Q. This is because we can break up the height of
a point into its local contributions and consider them individually. We then also

make use of the fact that Zp is compact.

It is possible to define the notion of equivalence of n-coverings and we will
be interested in them up to Qp-equivalence. However, it will become apparent

1We use the computer algebra package MAGMA (see [BCP97]) for all computations.
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that the height bound between Qp-equivalent n-coverings and E actually differs

depending on the Zp-equivalence class in which our n-covering lies. For example,
it would have been better to have considered the reduced (in the sense below)

quadric intersection

x1x2 + x1x4 + x2
2 − x2x3 + x2

3 + 2x2
4 = 0,

−3x1x2 + 4x1x3 + 2x1x4 + x2
2 − x2x3 − 4x2x4 − x2

3 − 3x3x4 − x2
4 = 0,

in the above example. This is equivalent to the quadric intersection (1) over Qp

for all p, but not over Z47, and it contains the point (1 : 0 : 0 : 0), which is of

even smaller height than the one previously found. We will give more extreme
examples in later sections.

To demonstrate this in general, we will show how to construct a graph whose

vertices represent Zp-equivalence classes. For n = 2, the graph is not complicated

and is often just a string of vertices, but for n = 4 it usually has many more
vertices and has weighted edges. We show how to generate the largest graphs in

section 4. The best bounds are found at the central vertices of these graphs, so
we can choose which n-covering is most likely to be the quickest on which to

search. Alternatively, if we are prepared to search on a few different n-coverings
simultaneously, then we can give the set which is best to use. Even in the worst

instances, these bounds turn out to be relatively small and workable.

To demonstrate that the bounds we calculate are better than previous meth-
ods, take the elliptic curve and 2-covering given by

E : y2 + xy = x3 + x2 − 2x + 1,

C2 : y2 + (x2 + xz + z2)y = −x3z − x2z2 + 2xz3 + z4.

The current method to bound the difference between the height of a point P2 ∈ C2

and a quarter of the height of the corresponding point P ∈ E is to use a method of
resultants, which gives a bound of

h(P2) − h(P)/4 ≤ 4.8201...

However by our methods, we can find a bound of 0.1234..., which is a marked
improvement. The improvements are even more obvious for 4-coverings, where
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the bound using resultants can become quite unworkable.

It should also be noted that this work is only possible thanks to recent de-

velopments in the theories of minimisation and reduction. See sections 2.2 and
3.2 for the definitions of these terms, but roughly speaking, minimisation allows

us to write equations for n-coverings such that the valuation of the discriminant
vp(∆(Cn)) is as small as possible. Roughly speaking, the reduction process tries to

get the n-coverings as near as possible to being Hesse forms2 and to have small
coefficients (over R). If the operations of minimisation and reduction were not

possible, then the bounds we produce would be meaningless, or at best very large.
Our results are a good way of seeing the benefits of these operations.

2For binary quartics, Hesse forms are y2 = a(x4 + z4) + bx2z2 for a, b ∈ C and for quadric
intersections they are a(x2

0 + x2
2) + bx1 x3 = a(x2

1 + x2
3) + bx0 x2 = 0 for a, b ∈ C.
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1.1 Notation

Let K be a number field with ring of integers OK and let MK be the set of standard

absolute values on K. For ν ∈ MK , let nν = [Kν : Qν]. Throughout, E/K will be an
elliptic curve defined over K with point at infinity O. The field K will usually be Q

and we will fix a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with ai ∈ Q. When not working in characteristic 2 or 3, we will usually assume

our elliptic curve is given in shorter Weierstrass form.

We will assume E is minimal and we will then write ∆(E) for its discrimi-
nant (called the minimal discriminant of E), calculated as a polynomial3 in the

coefficients of E.

For a curve C defined over Q or Qp, we will write C for its reduction mod-

ulo a prime p and the context will make it clear whether this is a general prime or
a specific one. The valuation at p and the absolute value at p will be denoted vp

and |.|p, respectively. We write C(R) for the set of points on C defined over a ringR.

Also, for two real-valued functions f and g defined on a set of points S, we
write

f = g + O(1),

if there exist constants c1 and c2 such that c1 ≤ f (P) − g(P) ≤ c2 for all P ∈ S.

1.2 Height Functions

The purpose of height functions is to get some idea of the ‘arithmetic size’ of
a point in projective space and the height of a point will be closely related to the

amount of time required to search for it, starting from 0. However, a height function
for elliptic curves was first required not for computation, but in order to prove the

Mordell-Weil Theorem. Good references for the theory of heights are chapters
VIII.5 and VIII.6 in [Sil09] and chapter 5 in [SZ03]. Let us start by defining a

height in projective space.

3Given on p46 of [Sil09].
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Definition 1 Let P ∈ PN(K) be the point given by (x0 : ... : xN) for xi ∈ K. The

height of P relative to K, written as the product of local heights, is

HK(P) =
∏

v∈MK

max
i
{|xi|v}nv .

The global absolute (or naive) height of P is then

H(P) = HK(P)1/[K:Q].

Note that this is ≥ 1, it is independent of the ground field and it can be shown that it
is independent of the choice of homogeneous co-ordinates for P. In later chapters,

K will usually be Q and we will be interested in calculating max{|xi|p} at all primes
p and∞.

Definition 2 For P as in the previous definition, the absolute logarithmic height of

P is given by

h(P) =
1

[K : Q]
log HK(P).

Note that this is ≥ 0 and it can be shown that for any constant c,

{P ∈ PN(K) : h(P) ≤ c}

is a finite set. We will also want to apply functions to points and calculate their
heights.

Definition 3 For f a morphism and P ∈ PN(K), we write h f (P) = h( f (P)).

A more complicated type of height function, with many benefits when working on
elliptic curves is the canonical height.

Definition 4 For E an elliptic curve over K and P ∈ E(K), the canonical (or

Neron-Tate) height is the function defined by

ĥ : E(K)→ R
P 7→ lim

N→∞
4−Nh([2N]P).

This has the following properties for all P,Q ∈ E(K) and m ∈ Z:

1. ĥ(P + Q) + ĥ(P − Q) = 2(ĥ(P) + ĥ(Q)).

2. ĥ([m]P) = m2ĥ(P).
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3. ĥ is a quadratic form on E.

4. ĥ(P) = 0⇔ P is a torsion point.

5. Let f ∈ K(E) be an even function of degree d, then dĥ = h f + O(1).

There are clear advantages to having a height function with these properties4, but
unfortunately it requires the group structure of an elliptic curve. This means it is

difficult to come up with a sensible definition for a canonical height function on
other curves and we will generally just use the naive height H(P).

It is worth noting that the canonical height does not depend on a choice of

Weierstrass equation, whereas the naive height does since it requires specific
co-ordinates.

1.3 General Selmer Groups

The elements of the 2- and 4-Selmer groups will be the focus of our study in later
sections, but it is worth discussing their general structure first.

Let us assume we have an elliptic curve E/K for a number field K and let

GK = Gal(K/K) be the absolute Galois group of K. From the multiplication by n

map on the elliptic curve, we have the following straightforward exact sequence of

Galois modules:
0 −→ E[n] −→ E

×n−→ E −→ 0.

We then pass to the long exact sequence of cohomology5:

0→ E(K)[n]→ E(K)
×n→ E(K)→ H1(GK , E[n])→ ...

from which we obtain the widely used Kummer exact sequence:

0 −→ E(K)
nE(K)

−→ H1(GK , E[n]) −→ H1(GK , E)[n] −→ 0,

4Indeed somewhat weaker properties are used to prove the Mordell-Weil Theorem.
5See for example Proposition 38 in [Ser02]
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which we can specialise to all the completions Kv of K:

0 // E(K)
nE(K)

//

��

H1(GK , E[n]) //

jv
��

γ

((RRRRRRRRRRRRRRR H1(GK , E)[n] //

��

0

0 // ∏
v

E(Kv)
nE(Kv)

∏
v µv// ∏

v H1(GKv , E[n]) // ∏
v H1(GKv , E)[n] // 0.

Definition 5 The n-Selmer Group S n(E/K) ⊂ H1(GK , E[n]) is given by ker(γ) in

the above diagram, i.e. the elements X ∈ H1(GK , E[n]) such that jv(X) ∈ im(µv)
for all places v.

This is a finite set (see for example page 4 of [Sto]). We can also define in passing
the mysterious Tate-Shafarevich Group.

X(E/K) = ker

H1(GK , E)→
∏

v

H1(GKv , E)


and in particular,

X(E/K)[n] =
S n(E/K)

(E(K)/nE(K))
.

The goal of n-descent is to understand the elements of S n(E/K) explicitly, since

this will give us an upper bound for the size of E(K)/nE(K). Note that the bound
will be slack whenever X[n] , ∅. This in turn gives us the rank of E, although we

would need to take into account the torsion subgroup first.

As we shall see in the next section, n-descent is performed by looking for
objects that can be viewed as twists of the multiplication by n map on E. We also

see that S 2(E/K) consists of curves C2 : y2 = g(x, z) for integral binary quartic
forms g and that S 4(E/K) consists of pairs of quaternary quadratic forms6

C4 : Q1(x1, x2, x3, x4) = Q2(x1, x2, x3, x4) = 0.

It is also the case that S 3(E/K) consists of elements C3 : h(x, y, z) = 0 for h a

ternary cubic form and that for n ≥ 5, elements of S n(E/K) can be realised as
a set of 1

2 n(n − 3) quadrics in Pn−1, but we will be focusing on n = 2 and 4.

A good reference for the theory of binary quartics is [Cre01], although there are
now many treatments of the subject. For ternary cubics, there is a good overview

6Geometrically the intersection of two quadrics in P3.
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in [AKM+01] and a more detailed approach in [Fis06]. For 4-descent and quadric

intersections, most people use [MSS96] as a first reference, but [Wom03] gives a
very readable account and [Sta05] gives a detailed description on his way to an

investigation of 8-coverings.

1.3.1 n-Coverings

Before understanding the output of n-descent, let us recall the following arithmeti-
cal objects.

Definition 6 A principal homogeneous space for an elliptic curve E/K is a smooth

curve C/K together with a simply transitive group action of E on C. i.e. a pair

(C, µ) where µ : C × E → C is a morphism satisfying

1. µ(p,O) = p for all p ∈ C,

2. µ(µ(p, P),Q) = µ(p, P + Q) for all P,Q ∈ E,

3. for all p, q ∈ C, there exists a unique P ∈ E such that µ(p, P) = q.

Then we have the following notion of equivalence of two principal homogeneous

spaces.

Definition 7 Two homogeneous spaces (C, µ) and (C′, µ′) are isomorphic if there

exists an isomorphism ϕ : C → C′ which is compatible with the action of E.

Choose p0 ∈ C and then define ν : C → E such that ν(p) = P (the unique point on

E with µ(p0, P) = p). This is an isomorphism over K. Now let us introduce the
idea of an n-covering which will form the focus of our study in later chapters.

Definition 8 A pair (C, π) consisting of a curve C and a morphism π is an n-

covering of E for some n if there exists an isomorphism ν defined over K such

that the following diagram commutes:

C
ν ↓ ↘π

E −→ E
[n]
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We say that an n-covering is defined over K if the curve C and the morphism µ are

both defined over K. So, (E, ϕ) for

ϕ : E −→ E

X 7−→ nX + P

and some P ∈ E(K) is an example of an n-covering of E defined over K. We can
also define what it means for two n-coverings to be isomorphic.

Definition 9 Two n-coverings (C1, π1) and (C2, π2) are isomorphic if there exists

an isomorphism of curves ψ such that the following diagram commutes.

C1
ψ //

  @
@@

@@
@@

@ C2

~~~~
~~

~~
~~

π1 E π2

Then, in order to try and understand the Selmer group (as defined in the previous
section), we have the following result which appears as Proposition 1.3 in [Sto].

We refer to the twists of X as the objects Y defined over K such that X and Y are
isomorphic over K.

Lemma 10 Let X be some sort of algebraic or geometric object defined over

K. Then the set of twists of X, up to K-isomorphism, are parametrised by

H1(GK ,AutK(X))

If we let X be the trivial n-covering defined by the pair (E, [n]), then the twists

of X are precisely the n-coverings of E. An automorphism of X is ‘translation
by an n-torsion point on E’, hence by applying the above lemma, we see that the

n-coverings up to K-isomorphism are parametrised by H1(GK , E[n]). So, all ele-
ments of S n(E/K), together with the n-descent map (which takes a point on Cn to a

point on E) are n-coverings. It is also true7 that principal homogeneous spaces are
parametrised by the group H1(GK , E) and the map H1(GK , E[n])→ H1(GK , E)[n]

takes the n-covering (C, π) to the principal homogeneous space (C, µ) for some
morphism µ and this allows us to realise S n(E/K) as the set of ‘everywhere locally

soluble’ n-coverings of E.

Definition 11 An alternative definition of S n(E/K) is the set of n-coverings (C, π)
(up to K-isomorphism) such that C(Kv) , ∅ for all places v.

7See [Cas67] for these facts, in particular Theorem 10.1 and Lemma 19.3.
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Now let us see how the heights of points on C compare to those on E. To embed

the curve C in P3, we need a K-rational divisor.

Lemma 12 Let (C, π) ∈ S n(E/K) be such that ν (in the diagram for an n-covering)

gives an isomorphism C → E over K and let O be the ‘point at infinity’ on E, then

there exists a divisor D1 ∼ ν∗([n.O]) defined over K.

Proo f : This argument can be seen in section 2 of [CM00], but was proved earlier

by Cassels in chapter 7 of [Cas62]. The divisor ν∗([n.O]) on C is of degree n and
is defined over K, so we have a linear equivalence class D of divisors of degree

n on C which is K-rational 8. Now consider the variety V/K of effective divisors
on C which are in D. Over K, this is a projective space, therefore V is a twist of

projective space over K. Since C is everywhere locally soluble, it follows that V

has a Kv-rational point for all completions Kv and therefore, by the Hasse Principle

for Brauer-Severi varieties, that V has a K-rational point, i.e. there is a K-rational
divisor D1 ∼ ν∗([n.O]) on C.

�

Let ψ be a morphism defined by the complete linear system |D1|. We then have the
following diagram for x denoting the map which takes the x co-ordinate of a point

on E and ϕ = x ◦ π:

ψ

C −→ Pn−1

π ↓ ↘ϕ

E −→ P1

x

The next lemma can be found in an altered form on page 11 of [Sto] and in some
sense it motivates our study of n-coverings.

Lemma 13 hx ◦ π = 2nhψ + O(1).

Proo f : Let H ⊂ Pn−1 and H′ ⊂ P1 be hyperplane sections. Then we have D1 =

ψ∗(H) a divisor of degree n on C as defined above and let D2 = ϕ
∗(H′) a divisor of

8To see this, take σ ∈ GK , then σ(ν)∗ differs from ν∗ by the pullback of an n-torsion point, but
this would still give us a linearly equivalent divisor, soD is K-rational.
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degree 2n2 on C. Then, for p a point on C, from the general theory of heights on

divisor classes we have:

h[D1](p) = hψ(p) + O(1),

h[D2](p) = hϕ(p) + O(1),

for all p ∈ C(K). Now if we have D2 ∼ 2nD1, then we are done, since then

hx(π(p)) = hϕ(p) = h[D2](p) + O(1)

= 2nh[D1](p) + O(1)

= 2nhψ(p) + O(1).

This uses two results from the theory of heights, which can be found as Theorems

B.2.5(b) and B.3.1. in [HS00]. Now two divisors on E are linearly equivalent if
and only if they have the same degree and the same sum. Here the degrees are

clearly the same, so it is enough to show equivalence of the sum. We are free to
replace C by any n-covering which is isomorphic over K, so let us choose C = E

and ν the identity. Then [D1] is just [n.O] and we have

E
[n.O]−→ Pn−1

[n] ↓
E

[2.O]−→ P1.

So D2 = 2[n]∗.O = 2
∑

T∈E[n](T ) and so it is enough to prove
∑

T∈E[n](T ) ∼ n2.O,

but it is a standard fact from group theory that elements of a group isomorphic to
(Z/nZ)2 sum to the identity9, so we are done.

�

This makes our question of finding the difference between the heights of points on
C and E look approachable, since we now know that constants do exist to bound

this difference. Our goal will now be to gain some machinery and intuition at the
smallest case n = 2 to calculate the bound there and then be able to say something

about larger n, but first we have a discussion on resultants.

9The elements with inverses sum to zero and if n is even, there are three non trivial 2-torsion
elements which also sum to zero
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1.4 An Overview of Resultants

Resultants can be a powerful tool in the computation of heights and they have

been studied extensively since the 19th century. [GKZ08] is a detailed treatment
of some of the algebra required for resultants and [CLO05] has a slightly more

applicable slant. We will not give a full treatment here, but it is important to
establish some facts that will be used later.

For f , g ∈ K[x] and

f = a0xn + ... + an,

g = b0xm + ... + bm,

then the resultant of f and g is given by

Res( f , g) = det



a0 b0

. . . .

. a0 . .

. . . b0

. . bm .

an . . .

. . . .

an bm



,

where the matrix above has m columns with the coefficients of f and n columns

with the coefficients of g. It is an integer polynomial in the coefficients of f and g.

Lemma 14 For f , g ∈ K[x] as above with roots in K given by (η j)n
j=1 and (ζi)m

i=1

respectively, then Res( f , g) is given by

am
0 bn

0

m∏
i=1

n∏
j=1

(ζi − η j).

Proo f : This is given as Exercise 10 on p83 of [CLO05].

�

This shows us the following important fact; Res( f , g) = 0 if and only if f and g

have a common root. Also, there exist polynomials α, β ∈ K[x], whose coefficients
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are integer polynomials in the coefficients of f and g such that

α f + βg = Res( f , g). (2)

This is shown in Proposition 9 on p152 of [CLO97] and we will use this fact in

sections 1.5 and 2.3.

1.4.1 Multi-Dimensional Resultants and Computation

The situation becomes a bit more complicated with more than one variable. Sup-

pose we have the following system of equations:

F1(x1, ..., xn+1) = ... = Fn+1(x1, ..., xn+1) = 0, (3)

for Fi =
∑
|α|=di ci,αxα ∈ K[x1, ..., xn+1]. For simplicity, we will assume that the

degrees di are all equal: d1 = ... = dn+1 = d, but we could proceed with more

generality if required. We have the following theorem to introduce the resultant.

Theorem 15 Fix d > 0, then there exists a unique polynomial Res (integral in the

coefficients of the Fi) with the following properties:

• If F1, ..., Fn+1 ∈ K[x1, ..., xn+1] are homogeneous of degree d, then equation

(3) has a solution in K[x1, ..., xn+1] if and only if Res(F1, ..., Fn+1) = 0.

• Res(xd
1, ..., xd

n+1) = 1.

• Res is irreducible, even over K.

Proo f : See section 13.1A of [GKZ08].

�

The following lemma will eventually help us achieve a height bound using resul-

tants.

Lemma 16 For F j as above, there exist non-trivial polynomials gi j ∈
K[x1, ..., xn+1] for i ∈ {1, ..., n + 1}, such that

n+1∑
j=1

gi jF j = cixk
i ,

for some integers ci and k.
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Proo f : Let us consider Fn+1 and F j as polynomials in xn+1 only, with coefficients

in K[x1, ..., x j−1, x j+1, ..., xn]. Then using the resultant from the last subsection, we
can get n equations of the form

Res(F j, Fn+1)xk
j = f j(x j, xn+1)Fn+1 + g j(x j, xn+1)F j,

for some polynomials f j and g j. The left hand sides of all these equations do not

involve xn+1, so they provide us with the same setting only one dimension lower,
i.e. we have equations

G1(x1, ...xn) = ... = Gn(x1, ...xn) = 0.

So now

Res(G j,Gn)xl
j = f ′j (x j, xn)Gn + g′j(x j, xn)G j

= f ′′j (x j, xn, xn+1)Fn+1 + g′′j (x j, xn, xn+1)Fn + h′′j (x j, xn, xn+1)F j.

And we get n − 1 equations like this, which eliminate xn. Therefore by induction
we get to one equation.

n+1∑
j=1

g1 jF j = c1xk
1,

for some integer k and constant c1. We could carry out the same procedure for the
other co-ordinates, hence the lemma is proved.

�

These constants ci almost have the desired properties of the resultant given in the
above theorem and in practice it appears that the resultant divides ci for all i. How-

ever, we will only be interested in finding constants such that we can write dixk
i as a

combination of the F j and the resultant provides these, so we will use the observed

fact that there exist polynomials g′i j in the coefficients of the F j such that

n+1∑
j=1

g′i jF j = Res(F1, ..., Fn+1)xk
i ,

for all i.

Let us now outline an algorithm to compute Res. This method can be found on
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page 103 of [CLO05] and we will take d = 2 and n = 3, since this will be useful in

later sections.

Let us define e to be the sum of the degrees of the polynomials Fi minus n,
i.e. in our case e = 5. Note that all monomials of degree e are divisible by xd

i for

some i. We then divide the monomials xα = xα1
1 ...x

αn+1
n+1 of total degree e into n + 1

sets as follows:

S 1 ={xα : xd
1 | x

α},
S 2 ={xα : xd

1 - xα, but xd
2 | x

α},
...,

S n+1 ={xα : xd
1, ...x

d
n - xα, but xd

n+1 | x
α}.

In our case, we have

S 1 ={x5
1, x

4
1x2, x4

1x3, x4
1x4, x3

1x2
2, x

3
1x2x3, x3

1x2x4, x3
1x2

3, x
3
1x3x4, x3

1x2
4, x

2
1x3

2, x
2
1x2

2x3,

x2
1x2

2x4, x2
1x2x2

3, x
2
1x2x3x4, x2

1x2x2
4, x

2
1x3

3, x
2
1x2

3x4, x2
1x3x2

4, x
2
1x3

4},
S 2 ={x1x4

2, x1x3
2x3, x1x3

2x4, x1x2
2x2

3, x1x2
2x3x4, x1x2

2x2
4, x

5
2, x4

2x3, x4
2x4, x3

2x2
3, x

3
2x3x4,

x3
2x2

4, x
2
2x3

3, x
2
2x2

3x4, x2
2x3x2

4, x
2
2x3

4},
S 3 ={x1x2x3

3, x1x2x2
3x4, x1x4

3, x1x3
3x4, x1x2

3x2
4, x2x4

3, x2x3
3x4, x2x2

3x2
4, x

5
3, x

4
3x4, x3

3x2
4,

x2
3x3

4},
S 4 ={x1x2x3x2

4, x1x2x3
4, x1x3x3

4, x2x3x3
4, x1x4

4, x2x4
4, x3x4

4, x
5
4}.

Now, if we let N = |S 1 ∪ ... ∪ S n+1| =
 d + n

n

, then we can write the following

system of N equations in N variables:

(xα/xd
i )Fi = 0,

for all xα ∈ S i. So, if we let D be the determinant of the N × N coefficient matrix

formed from these equations, then we have Res(F1, ...Fn+1) | D, but clearly we
have created some redundancy here by expanding the number of equations we are

dealing with. In fact (see Theorem 4.9 on page 108 of [CLO05]) we have

Res(F1, ...Fn+1) = ±D/D′,
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for D′ the determinant of the sub-matrix formed by deleting all the rows and

columns corresponding to monomials where xd
i | xα for exactly one i. This means

we can explicitly calculate the resultant for our example by considering the follow-

ing sets:

S ′1 ={x3
1x2

2, x
3
1x2

3, x
3
1x2

4, x2
1x3

2, x
2
1x2

2x3, x2
1x2

2x4, x2
1x2x2

3, x
2
1x2x2

4, x
2
1x3

3, x
2
1x2

3x4, x2
1x3x2

4,

x2
1x3

4},
S ′2 ={x1x2

2x2
3, x1x2

2x2
4, x

3
2x2

3, x
3
2x2

4, x
2
2x3

3, x
2
2x2

3x4, x2
2x3x2

4, x2
2x3

4},
S ′3 ={x1x2

3x2
4, x2x2

3x2
4, x

3
3x2

4, x
2
3x3

4},
S ′4 =∅.

These then allow us to calculate D and D′.

1.5 Bounding Height Differences

In this section we will see how people have approached the problem of bounding

|ĥ − h| on E. The simplest approach uses the ideas of the previous section. We
use the duplication formula for a point P = (x : y : z) (scaled so that x and z are

coprime) on E : y2z = 4x3 + b2x2z + 2b4xz2 + b6z3. For convenience we will write
this as the affine co-ordinate x(2P), so

x(2P) =
x4 − b4x2z2 − 2b6xz3 − b8z4

4x3z + b2x2z2 + 2b4xz3 + b6z4 =
f1(x, z)
f2(x, z)

,

where b8 = (b2b6 − b2
4)/4 and f1 and f2 are coprime polynomials. Then we know

from section 1.4 that there exist polynomials p1, p2, p3 and p4 of degree α such

that

p1(x, z) f1(x, z) + p2(x, z) f2(x, z) = kz4+α,

p3(x, z) f1(x, z) + p4(x, z) f2(x, z) = kx4+α,

for k the resultant of f1 and f2. We can ensure α ≤ 3. Now if f1 and f2 were to
have a common factor, then this factor would divide gcd(kx4, kz4) = k, so

kH(2P) ≥ max(| f1(x, z)|, | f2(x, z)|).
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If we then assume z > x, we have H(P) = z and

kH(2P) ≥ max(| f1(x, z)|, | f2(x, z)|) ≥ kH(P)4zα

|p1(x, z) ± p2(x, z)|

and so

H(2P) ≥ c1H(P)4,

for some constant c1 depending on the coefficients of p1 and p2. We also have the
following upper bound.

H(2P) ≤ max((1 + |b4| + 2|b6| + |b8|), (4 + |b2| + 2|b4| + |b6|))H(P)4 = c2H(P)4.

Obtaining a third constant from these, c3 = max(log(c1), log(c2))/4, we have∣∣∣∣∣14h(2P) − h(P)
∣∣∣∣∣ < c3 and |ĥ(P) − h(P)| < 4c3/3,

by iteration of the triangle law. This method could be found in many introductions

to elliptic curves10 and is really just showing that a bound exists. It is clear that
more work can be done and a more serious attempt at a bound was made by Zimmer

(see [Zim76] and [SZ03]), which we will summarise in the next subsection.

1.5.1 Zimmer’s Bound

First let us make some definitions before we can state Zimmer’s theorem. For K a
number field, fix the completion Kν of K at the place ν, let ν(x) = − log(|x|ν) and

let nν = [Kν : Qν]. Define:

d(P) = − 1
2[K : Q]

∑
ν∈MK

nν max
(
ν(x), ν(b2),

ν(b4)
2

,
ν(b6)

3
,
ν(b8)

4

)
,

λ =
1

[K : Q]

∑
ν∈MK

nν max
(
ν(b2),

ν(b4)
2

,
ν(b6)

3
,
ν(b8)

4

)
,

µl =
1

[K : Q]

∑
ν∈MK

nν min
(
0, ν(b2),

ν(b4)
2

,
ν(b6)

3
,
ν(b8)

4

)
,

µh =
1

[K : Q]

∑
ν∈MK

nν max
(
0,min

(
ν(b2),

ν(b4)
2

,
ν(b6)

3
,
ν(b8)

4

))
,

for P = (x, y) ∈ E(K). Then he proves two theorems.

10For example Theorem 5.6 in [Sil09]
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Theorem 17 (5.18 (a) in [SZ03]) For all P ∈ E(K),

1
2
µl ≤

1
2

h(P) − d(P) ≤ 1
2
µh.

Theorem 18 (5.35 (c) in [SZ03])

−(λ +
4
3

log 2) ≤ 1
2

ĥ(P) − d(P) ≤ 1
2

log 2.

This leads to the result, which is nicely stated in [Uch06]:

−2µl + µh −
8
3

log 2 ≤ ĥ(P) − h(P) ≤ µl + log 2.

1.5.2 Silverman’s Bound

Silverman, in his paper [Sil90], then goes on to make improvements to the bounds
above. He defines as usual:

h(x) =
1

[K : Q]

∑
ν∈MK

nν log(max(1, |x|ν)),

h∞ =
1

[K : Q]

∑
ν∈M∞K

nν log(max(1, |x|ν)).

He also defines 2∗ to be 2 if b2 , 0 and 1 if b2 = 0 and

µ(E) =
1

12
h(∆) +

1
12

h∞( j) +
1
2

h∞

(
b2

12

)
+

1
2

2∗.

He then proves the following theorem.

Theorem 19 For all P ∈ E(K), we have

− 1
24

h( j) − µ(E) − 0.973... ≤ ĥ(P) − h(P) ≤ µ(E) + 1.07...

As a corollary, if E is written in shorter Weierstrass form y2 = x3 + ax + b, by
replacing h∞( j) with the larger quantity h( j), we can get the following simpler

bound.

−1
8

h( j) − 1
12

h(∆) − 0.973... ≤ ĥ(P) − h(P) ≤ 1
12

h( j) +
1
12

h(∆) + 1.07...

As an example, Silverman goes further to say that if we work over Q, if E is in

shorter Weierstrass form and if we are in the following special case: a, b ∈ Z,
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4a3 + 27b2 square-free, gcd(a, 3b) = gcd(2, b) = 1 and a > 0, then in particular the

theorem implies
h(P) ≤ ĥ(P) + 2.137...

Even without these specialisations, this bound is much better since the constants are

vastly improved. There are examples in the paper to demonstrate that his method
is better than that of Zimmer.

1.5.3 Siksek’s Bound

Siksek (in [Sik95]) goes about bounding |h(P)− ĥ(P)| by estimating h(2P)− 4h(P)

at each place. Let ν be a valuation on K (with π a prime element for ν) and let
f (X) = 4X3 + b2X2 + 2b4X + b6 and g(X) = X4 − b4X2 − 2b6X − b8. He defines

Dν ={X ∈ Kν : |X|p ≤ 1, f (X) ∈ K2
ν },

dν = inf
X∈Dν

max(| f (X)|ν, |g(X)|ν),

εν = inf
(X,Y)∈E(Kν)

max(| f (X)|ν, |g(X)|ν)
max(1, |x|ν)4 .

Also, letting f ′(X) = X4 f (1/X) and g′(X) = X4g(1/X) be the ‘reversals’ of f and
g, he defines D′ν and d′ν in the natural way11. Then he proves the following theorem

Theorem 20 The following are properties of εν:

• εν exists and εν = min(dν, d′ν).

• εν < 1.

• If ν is non-archimedean, E is minimal at ν and the Tamagawa number cν = 1,

then εν = 1.

• If ν is non-archimedean, then εν = d′ν.

• If ν is non-archimedean and n = [ ν(4∆)
2 ], then εν ≥ |π|2n

ν .

11Note that we have used the reciprocal of Siksek’s quantity εν here, but this will reduce confusion
when certain notation is introduced in Section 2.3.
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After proving this, he defines µν as follows (for E0(Kν) = {P ∈
E(Kν) : P is non-singular}).

µν = 1/3 for archimedean ν,

1/3 ν non-arch, E not minimal,

0 ν non-arch, E minimal, cν = 1,

1/4 ν non-arch, E minimal, E(Kν)/E0(Kν) � Z/2Z or (Z/2Z)2,

(1 − 1/4α)/3 ν non-arch, E minimal, E(Kν)/E0(Kν) � Z/2αZ for some α > 1,

1/3 ν non-arch, E minimal, cν , 2k for some k.

Then he proves the following theorem.

Theorem 21 For all P ∈ E(K),

h(P) − ĥ(P) ≤ − 1
[K : Q]

 ∑
ν∈MK

µνnν log(εν)

 .
This work of Siksek is then improved (especially at the complex achimedean

places) in his joint paper with Prickett and Cremona, [CPS06].

Due to previous work in the theory of binary quartics (see for example [Cre01]
and section 2.2), the existence of a new method becomes apparent using similar

ideas to those of Siksek. As we shall see, by fixing a Weierstrass equation for E

and an n-covering (Cn, π), we can bound the expression | 1
2n h(π(P)) − h(P)| by a

constant B3, say. This factor of 2n will improve on the previous methods greatly.

For example, suppose the bound on the right hand side in Theorem 21 is
given by B1 and suppose we want to prove there are no points P on E with

ĥ(P) < 1000, then using current methods we would have to search for points on E

of naive height up to 1000 + B1. Each generator of E comes from some covering

curve, so if we were to calculate all the 2-coverings say, and compute the bound
B3 (above), then we would only need to search on each one up to naive height

250 + B1/4 + B3. The fact these are logarithmic heights means that even if we
have to search on several different curves, the time required would be much smaller.

In the above example, this method only really becomes more efficient when

the bound B3 is small compared to 1000, but we have methods for writing (for
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example) binary quartics ‘nicely,’ i.e. in minimised and reduced form and this will

ensure B3 remains fairly small. See [SC02] and [SC03] for how minimisation and
reduction work for binary quartic forms. We will define exactly what we mean by

these terms in sections 2.2 and 3.2.

The above methods concentrate on improving the lower bound for the canonical
height, which is often more useful since it gives us an upper bound for how far

we would need to search for points. It is worth noting that work is being done on
the upper bound too; see for example [Tho08], which investigates this bound over

totally real number fields, not just over Q.
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2 Binary Quartic Forms

It seems sensible to start our investigation with n = 2, since this will give us the
easiest equations to handle, so let us introduce the setup for 2-coverings in detail.

2.1 Two Descent

By conducting 2-descent, we aim to compute all the ‘everywhere locally sol-
uble’ 2-coverings of E. We will work over Q here, letting G = Gal(Q/Q),

Gp = Gal(Qp/Qp) and referring to S 2(E/Q) as S 2(E).

Definition 22 The Q-algebra associated to E is given by

Q[θ] =
Q(T )

( f (T ))
,

for E : y2 = f (x).

This can be expanded as the direct sum of at most three fields (one for each irre-

ducible factor of f ). Note here that the field norm NQ[θ]
Q

(
(x − θ)) = f (x). Now we

define the following map12

Definition 23

µ : E(Q) −→ Q[θ]∗

(Q[θ]∗)2 ,

O 7−→ 1,

(x, y), y , 0 7−→ (x − θ) mod (Q[θ]∗)2,

(x, 0) 7−→ (x − θ)∼ mod (Q[θ]∗)2.

In the last part of the definition, f (x) = 0, so one component of the sum of fields

becomes just Q. Therefore ∼ refers to the fact that we replace this component
in the image with b ∈ Q∗, chosen such that NQ[θ]

Q
(µ(x, 0)) ∈ Q∗2 , rather than being 0.

Some calculation can now show that this is a homomorphism, with kernel

2E(Q) (see lecture 15 in [Cas91] for details). In fact, we can view H1(G, E[2]) as
a subgroup of Q[θ]∗/(Q[θ]∗)2 and µ gives us the connecting map in the diagram

from section 1.3 (which we will still refer to as µ). We specialise the diagram to

12Sometimes referred to as ‘Cassels’ map’.
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K = Q and the places p ≤ ∞

0 // E(Q)
2E(Q)

µ //

��

H1(G, E[2]) //

jp

��

H1(G, E)[2] //

��

0

0 // ∏
p

E(Qp)
2E(Qp)

∏
p µp// ∏

p H1(Gp, E[2]) // ∏
p H1(Gp, E)[2] // 0.

We are interested in calculating the image of µ, in particular, recall the definition
of the Selmer group.

Definition 24 The 2-Selmer group of E over Q is given by

S 2(E) = {X ∈ H1(G, E[2]) such that jp(X) ∈ im(µp) for all p ≤ ∞}.

To discover more about the structure of the Selmer group, suppose we have an

element δ ∈ im(µ). This must come from a point on E, i.e. there exists (x, y) ∈ E(Q)
such that x − θ = δd2 with d ∈ Q[θ]∗, so it can be represented as a polynomial in

θ with coefficients in Q and no term higher than θ2 (since f (θ) = 0 allows us to
remove those). So we have

x − θ = δ(u0 + u1θ + u2θ
2)2

= Q0(u0, u1, u2) + Q1(u0, u1, u2)θ + Q2(u0, u1, u2)θ2,

where the Qi are quadratic forms over Q depending on δ. Now, equating coeffi-

cients of θ and θ2, we get a solution to

Q1(u0, u1, u2) = −1, Q2(u0, u1, u2) = 0. (4)

Since we necessarily have a solution everywhere locally, we must have that the

conic Q2(u0, u1, u2) = 0 is soluble over Qp for all p. It is a well known fact that
the Hasse Principle holds for conics (see chapter 3 of [Cas91]), so therefore it

must have a point over Q. Now we can parametrise the conic giving (u1 : u2 : u3)

as ( f1(s, t) : f2(s, t) : f3(s, t)) for three quadratic forms fi. Putting these in the left
hand equation in (4) and homogenising gives an equation of the form

α2 = g(s, t),
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for some α ∈ Q∗ and binary quartic g. Indeed one way of visualising elements of

S 2(E) is as ‘everywhere locally soluble’ binary quartics

C2 : y2 = g(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4. (5)

These (up to Q-equivalence), together with the 2-covering map which will be dis-
cussed in the next section are the required 2-coverings predicted by the discussion

in section 1.3.1.

2.2 Definitions and Invariant Theory

In this section, (C2, π) will be a 2-covering obtained as an element of the 2-Selmer
group from conducting 2-descent. As we have seen, C2 can be represented by a

binary quartic given in (5) above. This is a curve in projective space where the y

co-ordinate is given a double weighting, i.e. the points (x : y : z) and (λx : λ2y : λz)

are equivalent for all λ , 0. We will sometimes think of the projective curve
y2 = g(x, z) as two affine pieces

y2
1 = g(x, 1), y2

2 = g(1, z)

glued together. We will now discuss some of the basic properties of binary quartics.

If K is a field, GL2(K) acts on the space of binary quartics via:

A =

 α β

γ δ

 : g(x, z) 7−→ g(αx + βz, γx + δz)

and we will write that the coefficients a, b, c, d and e map to a∗, b∗, c∗, d∗ and e∗

under this action. We will sometimes write A(C2) for A(g).

We also have the action of K∗ on binary quartics via simply multiplying
g(x, z) by some constant λ2 and therefore a general action can be viewed as a pair

< λ, A > for λ ∈ K∗, A ∈ GL2(K). We refer to two binary quartics as K-equivalent
if they are related by such a pair (recall that S 2(E) consists of binary quartics up

to Q-equivalence). Now let us define the notion of an invariant for g.
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Definition 25 An invariant of g of weight w and degree n is a homogeneous poly-

nomial f of degree n such that

f (a∗, b∗, c∗, d∗, e∗) = det(A)w f (a, b, c, d, e)

for all A ∈ GL2(Q).

It can be shown that any invariant of g is a combination of the following two:

I = 12ae − 3bd + c2, J = 72ace + 9bcd − 27ad2 − 27eb2 − 2c3 (6)

and the Jacobian elliptic curve can be written as13

EIJ : y2z = x3 − 27Ixz2 − 27Jz3.

The discriminant of C2 is then given by ∆(C2) = 1
27 (J2 − 4I3).

Definition 26 An integral binary quartic given in the equation for C2 is minimal

at p if vp(∆(C2)) is minimal among all integral binary quartics Qp-equivalent to it.

The reduction process tries to get an n-covering as near as possible to being a Hesse
form with small coefficients (over R); i.e. one of the form y2 = a(x4 + z4) + bx2z2

for a, b ∈ C. For a full treatment, see section 9 of [CFS09], but it amounts to
conducting reduction on a certain lattice.

For simplicity, we will always assume that our binary quartic is minimised

and reduced. In particular, this means that p2 cannot divide all the coefficients of a
minimal binary quartic, since then

∆

< 1
p
,

 1 0
0 1

 > (C2)


has smaller valuation.

13Weil explained how we can write the Jacobian in this form in [Wei54] using formulae of Hermite,
but later he realised that these formulae had been known to Euler and he explains this in [Wei83].
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Theorem 27 If C2 is minimal and has Jacobian E, then vp(∆(C2)) = vp(∆(E)) for

all p > 2.

Proo f : This is a consequence of Proposition 4.2 in [SC02].

�

We will also use the notion of a covariant function.

Definition 28 A covariant of g of weight w is a polynomial M such that

M(a∗, b∗, c∗, d∗, e∗; x, z) = det(A)wM(a, b, c, d, e;αx + βz, γx + δz)

for all A ∈ GL2(Q).

Note that g is trivially a covariant and we also have two other covariants of weights
2 and 3 respectively:

g4(x, z) = (3b2 − 8ac)x4 + 4(bc − 6ad)x3z + 2(2c2 − 24ae − 3bd)x2z2

+ 4(cd − 6be)xz3 + (3d2 − 8ce)z4,

g6(x, z) = (b3 + 8a2d − 4abc)x6 + 2(16a2e + 2abd − 4ac2 + b2c)x5z

+ 5(8abe + b2d − 4acd)x4z2 + 20(b2e − ad2)x3z3

− 5(8ade + bd2 − 4bce)x2z4 − 2(16ae2 + 2bde − 4c2e + cd2)xz5

− (d3 + 8be2 − 4cde)z6.

Note that if g and g4 have a common root then (by an SL2 action) we may assume it
is at (0, 1), so e = d = 0. Therefore I = c2, J = −2c3 and ∆(C2) = 0 and this would

mean C2 is singular. Now one may check that the following relation (or syzygy) is
satisfied:

27g2
6 = g3

4 − 48Ig2g4 − 64Jg3.

After some manipulation, we see

(27g6(x, z))2 = (4g(x, z))3

(3g4(x, z)
4g(x, z)

)3

− 27I
(
3g4(x, z)
4g(x, z)

)
− 27J


and replacing g(x, z) by y2, we get(

27g6(x, z)
(2y)3

)2

=

(
3g4(x, z)

(2y)2

)3

− 27I
(
3g4(x, z)

(2y)2

)
− 27J.
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So the following is a morphism from C2 to EIJ:

π : (x : y : z) 7−→
(
6yg4(x, z) : 27g6(x, z) : (2y)3

)
,

which we will take as our covering map. Replacing y2 by g(x, z) and rescaling, we

can write this as

π : (x : y : z) 7−→
(
3g4(x, z) :

27g6(x, z)
2y

: 4g(x, z)
)
. (7)

We will use this map when calculating heights and we will do this by summing

local contributions, i.e. H(π(P)) will be given by∏
p∈MQ

max(|3g4(x, z)|p, |4g(x, z)|p),

for P = (x : y : z). Before discussing this further, there are some adjustments we

must make at the awkward primes 2 and 3.

2.2.1 Characteristic 3

In characteristic 3, a problem arises because the formula for the Jacobian EIJ is
always singular, which means we must find a different covering map. Note that

π3 : (x : y : z) 7→ (9x + 3cz : − 27y : z)

maps EIJ to an elliptic curve which is in general non-singular at 3. Here c is (as
usual) the third coefficient of g. Now π−1

3 π is a map to E3 defined in characteristic

3, for

E3 : y2z = x3 + cx2z + (−4ae + bd)xz2 + (−4ace + ad2 + b2e)z3.

Therefore in projective co-ordinates (recall that we will only be interested in the x

and z co-ordinates), we instead consider the covering map given by

(x, z) 7→ (̃g(x, z), 4g(x, z)) =
(
g4(x, z) − 4cg(x, z)

3
, 4g(x, z)

)
. (8)
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2.2.2 Characteristic 2

A further problem occurs in characteristic 2, which is that C2 may not be mini-

mal14. In fact the general form for a 2-covering in characteristic 2 is

C2 : y2 + P(x, z)y = Q(x, z),

y2 + (α0x2 + α1xz + α2z2)y = a2x4 + b2x3z + c2x2z2 + d2xz3 + e2z4.

Now, if we are given a generalised binary quartic (i.e. one in the above form) that
is minimal everywhere, this may mean it has cross terms. In fact we have a new

action to consider on these quartics; that of a y-substitution.

y 7→ y − (β0x2 + β1xz + β2z2),

for integers βi. We will now write an action on a generalised binary quartic as

< λ, [β0, β1, β2], M >,

for λ , 0 and M ∈ SL2 as before. Note that the first argument now acts by mapping

y2 + P(x, z)y = Q(x, z) to

y2 + λP(x, z)y = λ2Q(x, z).

Minimal at 2 now means that the valuation of the discriminant is smallest amongst

all generalised binary quartics Q2 equivalent to it. When C2 is written as a
generalised binary quartic, Theorem 27 holds for p = 2.

Completing the square on a generalised binary quartic, i.e. using the map

(x : y : z) 7→ (x : y − 1
2

P(x, z) : z),

would give us a binary quartic in the sense of section 2.2 and we could calculate
the covariants and invariants as usual. This gives us a natural expression for the

covariant g4 which makes sense in characteristic 2, that is

y2 + (α0α1x2 + α2
1xz + α1α2z2)y = A2x4 + B2x3z +C2x2z2 + D2xz3 + E2z4,

14Fisher, in [Fis07], shows how to minimise binary quartics (and ternary cubics) at the primes 2
and 3.
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where A2, B2,C2,D2 and E2 have complicated expressions defined over Z given by

A2 =3b2
2 + 3b2α0α1 − 8a2c2 − 2α2

0c2 − 2α2
1a2 − 4α0α2a2 − α3

0α2,

B2 =4b2c2 + 2α0α1c2 + α
2
1b2 + 2α0α2b2 − 24a2d2

− 12α1α2a2 − 6α2
0d2 − 2α2

0α1α2,

C2 =4c2
2 + 2α2

1c2 + 4α0α2c2 − 48a2e2 − 12α2
0e2 − 12α2

2a2

− 6b2d2 − 3α0α1d2 − 3α1α2b2 − 2α2
0α

2
2 − α0α

2
1α2,

D2 =4c2d2 + 2α1α2c2 + α
2
1d2 + 2α0α2d2 − 24b2e2

− 12α0α1e2 − 6α2
2b2 − 2α0α1α

2
2,

E2 =3d2
2 + 3d2α1α2 − 8c2e2 − 2α2

2c2 − 2α2
1e2 − 4α0α2e2 − α0α

3
2.

We will call the binary quartics obtained by completing the square G and G4

respectively. They are not defined over Z2, but will be useful in discovering a map

that is. We will refer to the coefficients of G as a to e in the usual way, so for
example c = c2 +

1
2α0α2 +

1
4α

2
1.

Considering ((G4 − 4cG)/3, 4G) mentioned in the characteristic 3 case will

still not work, since the first argument will often have terms in 1
2 or 1

4 . However,
if we add 1

2α0α2G(x, z) from the first argument (i.e. a multiple of the second

argument) then we get a well defined map in Z2 to the following elliptic curve:

E2 : y2z + α1xyz + (α0d2 + α2b2)yz2 = x3 + (−α0α2 + c2)x2z+

(−α2
0e2 − α0α2c2 − α2

2a2 − 4a2e2 + b2d2)xz2 + (−α2
0c2e2 + α0α1b2e2−

α0α2b2d2 − α2
1a2e2 + α1α2a2d2 − α2

2a2c2 − 4a2c2e2 + a2d2
2 + b2

2e2)z3.

This means that in projective co-ordinates, we consider

π2 : (x, z) 7→ (G̃(x, z), 4G(x, z)), (9)

for

G(x, z) =
1
4

P(x, z)2 + Q(x, z),

G̃(x, z) =
G4(x, z) −G(x, z)(4c2 − 4α0α2 + α

2
1)

3
.
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It is worth writing out the expressions for 4G and G̃ in full, since we will be refer-

ring back to them in the following section.

4G(x, z) =(4a2 + α
2
0)x4 + (4b2 + 2α0α1)x3z + (4c2 + 2α0α2 + α

2
1)x2z2+

(4d2 + 2α1α2)xz3 + (4e2 + α
2
2)z4,

G̃(x, z) =(b2
2 − 4a2c2 − α2

0c2 + α0α1b2 − α2
1a2)x4+

(−8a2d2 − 2α2
0d2 − 2α0α2b2 − 4α1α2a2)x3z+

(−16a2e2 − 2b2d2 − 4α2
0e2 − α0α1d2 + 2α0α2c2 − α1α2b2 − 4α2

2a2)x2z2+

(−8b2e2 − 2α2
2b2 − 2α0α2d2 − 4α0α1e2)xz3+

(d2
2 − 4c2e2 − α2

2c + α1α2d2 − α2
1e2)z4.

2.3 Bounding Heights on 2-coverings

First note that we can obtain a bound for | 14 h(π(P)) − h(P)| using the methods of

resultants by replacing f and g in section 1.4 with 4G and G̃. In fact, if we let
| f | be the maximum size of the coefficients of the polynomial f , then Lemma 3.2

in [Sil88] gives

max
 |4G(x, z)|
|4G| ,

|G̃(x, z)|
|G̃|

 ≥ |Res(4G, G̃)|max(|z4|, |x4|)
22053|4G|4|G̃|4

and this allows us to form a bound. However, we will demonstrate a better method
based on Siksek’s bound and show that this gives smaller constants in section 2.8.

Let us define the quantity εp, the details of which will form the focus of the

next few sections.

Definition 29 Let C2 : y2 + P(x, z)y = Q(x, z) be defined over Qp and let G and G̃

be as given in the previous section. Then define

εp(C2) = inf
(x:y:z)∈C2(Qp)

max(|4G(x, z)|p, |G̃(x, z)|p)
max(|x|p, |z|p)4 .

We have the freedom to scale a point (x : y : z) in projective co-ordinates, but the nu-
merator and denominator in the above expression are both homogeneous of degree

4, so εp is independent of this scaling. We will use this quantity in the following
theorem, which will be proved at the end of the next section. This will be our main

theorem for 2-coverings.

38



Theorem 30 Let C2 : y2 + P(x, z) = Q(x, z) be minimal for all primes p. Then for

P ∈ C2 and π the 2-covering map given in equation (9),

h(P) ≤ 1
4

h(π(P)) − 1
4

∑
p∈B

log(εp(C2)).

Here B ⊂ MQ is the set consisting of all primes dividing the discriminant ∆(E) as

well as ∞. Since C2 has been minimised, the primes dividing ∆(C2) are the same
as those dividing ∆(E). We shall see that the εp are computable, making it possible

to determine the bound.

2.4 Properties of εp

In this section we shall attempt to learn more about this quantity εp. Some of the

ideas and proofs are similar to those in [Sik95], although there it was applied to the
multiplication-by-2 map on the elliptic curve, rather than the 2-covering map. The

following lemma will show us how the various actions affect 4G and G̃, via some
algebra.

Lemma 31 Let G and G̃ be as given above and let λ, β0, β1, β2 ∈ Zp and M ∈
GL2(Zp). Then the following three transformations have the following effects.

< λ, [0, 0, 0],

 1 0
0 1

 > : 4G(x, z) 7→ 4λ2G(x, z),

G̃(x, z) 7→ λ4G̃(x, z),

< 1, [β0, β1, β2],

 1 0

0 1

 > : 4G(x, z) 7→ 4G(x, z),

G̃(x, z) 7→ G̃(x, z) + 4(α0β2 + 2β0β2 + α2β0)G(x, z),

< 1, [0, 0, 0],M > : 4G(x, z) 7→ 4G(M(x, z)T ),

G̃(x, z) 7→ det(M)2(G̃(M(x, z)T ) + 4kG(M(x, z)T )),

for some integer k.

Proo f : After the first transformation, our binary quartic is given by

y2 + λP(x, z)y = λ2Q(x, z),

so by examining the formula for 4G, we can see that every term has either two

coefficients from P(x, z) or one from Q(x, z). Therefore we get 4λ2G after this
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transformation. Similarly, by examining the formula for G̃, we can see that every

term gets multiplied by λ4.

For the second transformation, if we let R(x, z) = β0x2 + β1xz + β2z2, then
after this transformation P(x, z) becomes (P + 2R)(x, z) and Q(x, z) becomes

(Q − PR − R2)(x, z). Then 4G(x, z) = (P2 + 4Q)(x, z) becomes

(P2 + 4PR + 4R2 + 4Q − 4PR − 4R2)(x, z) = 4G(x, z),

so this remains unchanged. For G̃, recall that G4 was formed as a covariant of G,
so is also unchanged and

G̃(x, z) = (G4 − (4c2 − 4α0α2 + α
2
1)G)(x, z)/3,

which becomes

(G4 − (4(c2 − β0(α2 + β2) − β2(α0 + β0) − β1(α1 + β1)) − 4(α0 + 2β0)(α2 + 2β2)+

(α1 + 2β1)2)G)(x, z)/3 = (G̃ + 4(α0β2 + 2β0β2 + α2β0)G)(x, z),

as required.

For the GL2(Zp) transformation, it is enough to prove the lemma for the
two matrices

D =

 µ 0

0 1

 , T =

 1 1

0 1

 .
For the matrix D, if we replace x by µx in the formula for 4G(x, z),

then we get the same as replacing {α0, α1, α2, a2, b2, c2, d2, e2} by
{µ2α0, µα1, α2, µ

4a2, µ
3b2, µ

2c2, µd2, e2}. The only difference in G̃ is that we

get a factor of µ2 in every term. Hence the claim is true for this matrix.

For the matrix T , we will spare the reader the details, but a lengthy calcula-
tion shows that 4G(x, z) becomes 4G(x + z, z) and G̃(x, z) becomes

(G̃ − 4(b2 + 2a2)G)(x + z, z),

hence the lemma is proved.

�
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The following lemma will give us some freedom in later discussion.

Lemma 32 εp(C2) is invariant under Zp transformations, i.e. for a transformation

t defined over Zp and C2 defining a 2-covering over Qp, we have

εp(t(C2)) = εp(C2).

Proo f : We may assume

t =< 1, [β0, β1, β2],M >,

for βi ∈ Zp and M ∈ SL2(Zp). We will use the previous lemma to show how εp

changes. Let max(|4G(x, z)|p, |G̃(x, z)|p) = k, for x, z ∈ Zp and not both in pZp.

Then using the second and third transformations in Lemma 31, t : 4G 7→ 4G and
t : G̃ 7→ G̃ − 4lG (for some integer l) and

max(|4G(M−1(x, z)T )|p, |(G̃ − 4lG)(M−1(x, z)T )|p) =

max(|4G(M−1(x, z)T )|p, |G̃(M−1(x, z)T )|p) = k.

Therefore, the set of all values taken by max(|4G(x, z)|p, |G̃(x, z)|p) is the same as

the set of values after we have transformed by t (for x, z ∈ Zp and not both in pZp).

Also, max(|x|p, |z|p) stays the same after we have transformed by t, so when

we take the infimum over Qp points of all values taken by max(|4G(x,z)|p,|G̃(x,z)|p)
max(|x|p,|z|p) ,

namely εp, this is unchanged and we are done.

�

Now we have a couple of lemmas which will show us that there are only certain

points to consider when we are calculating εp.

Lemma 33 Let K be any field and C2 a curve defined by a generalised binary

quartic over K. Also let G and G̃ be as given above, then

(x : y : z) ∈ C2(K) is singular ⇔ 4G(x, z) = G̃(x, z) = 0.

Proo f : Using Lemma 31, we may assume (x : y : z) = (0 : 0 : 1). Since this is a

point on C2, we must have e2 = 0. Therefore, from the equations for 4G and G̃, we
have

α2
2 = α1α2d2 − α2

2c2 + d2
2 = 0,
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i.e. α2 = d2 = 0. These are exactly the criteria for a singular point.

�

Lemma 34 Let C2 have Zp coefficients and let a and A be the leading coefficients

of 4G(x, 1) and G̃(x, 1) respectively. Let p < ∞ be a prime such that p - gcd(a, A).
If P = (x : y : 1) ∈ C2(Qp), with P = (x : y : 1) ∈ C2(Fp) a non-singular point,

then

max(|4G(x, 1)|p, |G̃(x, 1)|p) = max(1, |x|p)4.

Proo f : If |x|p > 1, then

|4G(x, 1)|p ≤ |x|4p and |G̃(x, 1)|p ≤ |x|4p,

but p does not divide both A and a, so max(|4G(x, 1)|p, |G̃(x, 1)|p) = |x|4p and in this
case we are done.

If |x|p ≤ 1, we need to show that max(|4G(x, 1)|p, |G̃(x, 1)|p) = 1. So it is

enough to show that if 4G(x, 1) ≡ G̃(x, 1) ≡ 0 mod p, then P is singular for a
contradiction. This is simply applying Lemma 33 with K = Fp.

�

Corollary 35 Let B be as in Theorem 30. Then εp(C2) = 1 for all p < B.

Proo f : From the above lemma, if εp , 1 then there are two possibilities. We need

a singular point of C2 modulo p or we need p | gcd(a, A). The latter implies that
(1 : 0 : 0) is a singular point of C2 modulo p using Lemma 33 and both mean that

p ∈ B, so we are done.

�

Now, the following compact sets and infima will be important in the next lemma:

Dp = {x ∈ Qp : |x|p ≤ 1,G(x, 1) is a square in Qp},
D′p = {z ∈ Qp : |z|p ≤ 1,G(1, z) is a square in Qp},
dp = inf

x∈Dp
max(|4G(x, 1)|p, |G̃(x, 1)|p),

d′p = inf
z∈D′p

max(|4G(1, z)|p, |G̃(1, z)|p).

Note that the following two lemmas also hold for p = ∞, where Qp = R.
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Lemma 36 dp and d′p, as defined above, are non-zero.

Proo f : First note that Dp and D′p are compact subsets of Qp (with respect to the
p-adic topology), so the infima will be attained. Now suppose dp = 0, then there

exists an x ∈ Dp such that |4G(x, 1)|p = |G̃(x, 1)|p = 0, i.e. 4G(x, 1) = G̃(x, 1) = 0.
Using Lemma 33 with K = Qp, this means C2 is singular, which is a contradiction.

Similarly for d′p.

�

Lemma 37 εp(C2) = min(dp, d′p), which is non-zero.

Proo f : Let P = (x : y : z) ∈ C2(Qp). Since εp(C2) is independent of the scaling of

points, we may assume z = 1. If |x|p ≤ 1, then x ∈ Dp and we have εp = dp. If

|x|p > 1, then x−1 ∈ D′p and max(|4G(x,1)|p,|G̃(x,1)|p)
|x|4p

= max(|4G(1, x−1)|p, |G̃(1, x−1)|p),

so εp(C2) = d′p. Therefore εp(C2) = min(dp, d′p), which is non-zero by Lemma 36.

�

This means

0 < εp(C2) ≤ 1

and we are now ready to put the pieces together and prove Theorem 30.

Proo f : Recall for a general point P = (x : y : z) ∈ C2(Qp), we have

H(P) =
∏

p∈MQ

max(|x|p, |z|p)

and

H(π(P)) =
∏

p∈MQ

max(|4G(x, z)|p, |G̃(x, z)|p).

Now Definition 29 states

εp(C2) ≤
max(|4G(x, z)|p, |G̃(x, z)|p)

max(|x|p, |z|p)4 ,

so

H(π(P)) ≥
∏

p∈MQ

(εp(C2) max(|x|p, |z|p)4)

= H(P)4
∏

p∈MQ

εp(C2).
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Therefore, by Lemma 37 and Corollary 35 we have

h(π(P)) − 4h(P) ≥
∑
p∈B

log(εp(C2)),

by taking logs, which achieves the result.

�

2.5 Calculation at the Infinite Place

The case for p = ∞ requires a slightly inelegant approach, but the method lends
itself easily to an algorithm for computation. Here Qp = R, so 4G and G̃ are real

polynomials and |.|p is the usual real absolute value. We need to find

d∞ = inf
X∈D∞

max(|4G(X, 1)|, |G̃(X, 1)|),

d′∞ = inf
X∈D′∞

max(|4G(1, X)|, |G̃(1, X)|),

where

D∞ = {X ∈ R : |X| ≤ 1 and G(X, 1) ≥ 0},
D′∞ = {X ∈ R : |X| ≤ 1 and G(1, X) ≥ 0}.

Now we have the following routine lemma for infima.

Lemma 38 Let f1 and f2 be continuous real valued functions on a closed and

bounded interval I. Then the infimum over I of the continuous function s(X) =

max(| f1(X), | f2(X)|) occurs at one of the following points:

• An end point of I.

• A root of f1, f2, f1 + f2 or f1 − f2 in I.

• A turning point of f1 or f2 in I.

Proo f : At any point which is not an end point of I or one of the roots mentioned

above, then (in a neighbourhood of that point) s = f1,− f1, f2 or − f2. This means
that the infimum of these points must be a local supremum or infimum of f1 or f2.

�
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Thus, in order to compute ε∞(C2), we need to use the following algorithm:

• D∞ is a finite union of closed and bounded intervals (since g is a real poly-
nomial), so we need to find these intervals. Call them Ii.

• For each Ii, find the value of max(|4G(X, 1)|, |G̃(X, 1)|) at each of the roots,

turning points and end points as mentioned in Lemma 38 (for f1 = 4G and
f2 = G̃).

• Find the minimum of all of these values over all intervals Ii. This is d∞.

• Repeat the process for I′i and D′∞ in order to find d′∞.

• Calculate ε∞(C2) = min(d∞, d′∞).

While this seems like a laborious algorithm, it is actually relatively easy for a

computer to carry out all the steps. For example, take the curve (whose Jacobian
has reference ‘988b1’ in [Cre97])

C2 : y2 + x2y = 268x4 − 965x3z + 1530x2z2 − 292xz3 − 127z4.

In order to calculate ε∞, we calculate 4G and G̃ and then find the roots of 4G(x, 1)
between −1 and 1. This gives us two intervals for D∞, namely

[−1,−0.1993...] and [0.4912..., 1].

We then look within these intervals for roots or turning points of 4G, G̃, 4G+G̃ and

4G − G̃, which yields the points 0.8700..., 0.8716... and −0.5322.... The smallest
value of

max(|4G(x, 1)|, |G̃(x, 1)|)

over these seven points (the three above and the four end points of the intervals)
comes out to be 1180.8957.... Then we proceed with 4G(1, z); this has no roots be-

tween −1 and 1, therefore there is only one interval to consider. However, searching
this interval for roots and turning points of 4G, G̃, 4G + G̃ and 4G − G̃ yields four

points to consider:

−0.9044...,−0.8997...,−0.3871..., 0.3603...

plus the two end points. The minimum of max(|4G(1, z)|, |G̃(1, z)|) over these eight

points comes out as 10017.5914..., therefore the value of ε∞ is 1180.8957...
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We expect that having our binary quartic in reduced form will give a smaller value
for ε∞ in general.

2.6 The Finite Places

Now let us investigate what happens when p < ∞. Recall that we have εp(C2) =
min(dp, d′p).

Definition 39 For C2 a binary quartic with coefficients α0, α1, α2, a2, b2, c2, d2 and

e2 and vp the p-adic valuation, define the valuation of C2 to be

vp(C2) = min(vp(α0), vp(α1), vp(α2), vp(a2), vp(b2), vp(c2), vp(d2), vp(e2)).

Definition 40 For C2 with coefficients α0, α1, α2, a2, b2, c2, d2, e2 ∈ Zp and P =

(0 : 0 : 1) a singular point of C2 modulo p. Then P is a non-regular point if p2 | e2.

Lemma 41 For C2 given by y2 + P(x, z)y = Q(x, z), if vp(C2) = 1, then εp(C2) ≤
1/p2 if 4G(x, z)/p has a root over Fp and εp(C2) = 1 if not. If vp(C2) = 0, then

εp(C2) ≤ 1/p2 if C2 contains a non-regular point over Fp and εp(C2) = 1 if not.

Proo f : If vp(C2) = 1 then vp(G̃) = 2, so any root of 4G/p modulo p could
be moved by an SL2(Zp) transformation to (0 : 0 : 1), after which p2 | e2 and

therefore εp(C2) ≤ 1/p2. If 4G/p has no roots modulo p, then |4G(x, z)|p is always
1/p, but by consideration modulo p2, we can see that if p2 - e2, then (0 : 0 : 1)

cannot lift to a Qp point and so may be ignored. Therefore εp(C2) = 1.

If vp(C2) = 0, we only need to take the infimum over the Qp points reduc-
ing to singular points of C2 over Fp, because of the proof of Lemma 34. We do

not need to consider all singular points over Fp, since εp(C2) is defined as the
maximum over Qp points. Now, if p2 - e2, then consideration modulo p2 shows

that the point (0 : 0 : 1) cannot lift to a Qp point. So, for a contribution we need
p2 | e2 and then we also have p | α2 and d2, since the point is singular. Therefore,

p2 divides the last coefficient of G̃, which is given by

−α2
1e2 + α1α2d2 − α2

2c2 − 4c2e2 + d2
2

and therefore εp(C2) ≤ 1/p2. Hence the lemma is proved.

�
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2.6.1 Fp Points Not Lifting Uniquely

Restricting our discussion to those quartics which give a contribution to εp(C2),

from above we have seen that these are those with points whose reduction modulo
p is a non-regular point defined over Fp (including those where vp(C2) = 1). How-

ever, two different Qp points above the same Fp point could give a different value
for εp. For example, when we take the quartic

C2 : y2 + x2y = 268x4 − 965x3z + 1530x2z2 − 292xz3 − 127z4,

4G(x, 1) has repeated roots at 6 and 10 over F19. Simply using x = 10 would
yield a contribution of 19−2 to ε19(C2). However, 106714 ≡ 10 mod 19 and we

have 196 dividing both 4G(106714, 1) and G̃(106714, 1) and in fact ε19(C2) = 19−6.

Before tackling this problem, we need to make some definitions.

Definition 42 The contribution to εp(C2) from the set of Qp points X′ reducing to

the set X ⊂ C2(Fp) is denoted

εp(C2, X) = inf
(x:y:z)∈X′

max(|4G(x, z)|p, |G̃(x, z)|p)
max(|x|p, |z|p)4 .

For example, Lemma 41 shows that

εp(C2) = εp(C2,N),

for N the set of non-regular points of C2 over Fp. To make our task simpler,

we will move points that we want to consider to somewhere convenient (which
will not affect εp, because of Lemma 32), i.e. to (0 : 0 : 1). So our task is now

to calculate εp(C2, {(0 : 0 : 1)}). This then only has a contribution if we have
p | α2, d2 and p2 | e2.

At this point we can note that curves with Tamagawa number 1 can yield a

contribution15.
15Recall the definition of the Tamagawa number at p, cp = [E(Q) : E0(Q)]. Note that this is not as

strong as the analogue in Siksek’s paper [Sik95], where he proves that there is no contribution to his
version of εp when the Tamagawa number is 1.
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2.6.2 Operating To Evaluate εp

Definition 43 A 2-covering C2 defines an ‘end quartic’ either if it has only one

non-regular point over Fp and this is at (1 : 0 : 0) or if it has no non-regular points

over Fp.

Definition 44 For a prime p and C2 given by y2 + P(x, z)y = Q(x, z), the following

is the ‘flip’ operation on C2

Υ : C2 7−→ C′2,

for C′2 given by

C′2 : y2 +
1
p

P(px, z)y =
1
p2 Q(px, z).

The new quartic obtained has Zp coefficients as long as p | α2, d2 and p2 | e2. This
means that if C2 is not an end quartic then we can move16 a non-regular point (one

not at (1 : 0 : 0)) to (0 : 0 : 1) and apply Υ. Note that ‘flipping’ preserves the
invariants I and J. It does however move the quartic to a different Zp-equivalence

class.

We can also define Υ−1 whenever we have a non-regular point at (1 : 0 : 0).
When applying Υ (or Υ−1), the translation of any singular points to (0 : 0 : 1) (or

(1 : 0 : 0)) is understood.

Lemma 45 If C2 defines an end quartic, then εp(C2,C2(Fp) \ {(1 : 0 : 0)}) = 1.

Proo f : If vp(C2) = 1, then 4G(x, 1)/p has no roots modulo p for an end quartic

(if it did, we could move the root to 0 and have p2 | e2, i.e. we would have a
non-regular point of C2), so εp(C2,C2(Fp) \ {(1 : 0 : 0)}) = 1 (by considering

Lemma 41) and we are done.

If vp(g) = 0, then only a non-regular point of C2 could give a contribution
by Lemma 41. But we have assumed that if C2 has a non-regular point then this is

at (1 : 0 : 0) and there are no others, so εp(C2,C2(Fp) \ {(1 : 0 : 0)}) = 1.

�

Lemma 46 Let C2 define an integral generalised binary quartic with a non-

regular point at (x : y : z) = (0 : 0 : 1) and let C′2 = Υ(C2). Then we have

εp(C2, {(0 : 0 : 1)}) = p−2εp(C′2,C
′
2(Fp) \ {(1 : 0 : 0)}).

16Using an SL2(Zp) transformation of the form x 7→ x + λz and possibly a y substitution.
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Proo f : Suppose εp(C2, {(0 : 0 : 1)}) = p−k, then k is the greatest integer such that

there exists an x0 ∈ Zp with pk | 4G(x0 p, 1) and pk | G̃(x0 p, 1). This means that k−2
is the greatest integer such that there exists an x0 ∈ Zp with pk−2 | p−24G(x0 p, 1)

and pk−2 | p−2G̃(x0 p, 1). Using Lemma 31, we can see that after the transformation

<
1
p
, [0, 0, 0],

 p 0
0 1

 >,
i.e. Υ, these are what 4G(x0, 1) and G̃(x0, 1) become. Therefore εp(C′2,C

′
2(Fp) \

{(1, 0, 0)}) = p2−k.

�

It now helps to break into cases according to the reduction type of the elliptic curve

E2.

2.6.3 A Classification

For simplicity in computation, notice that if 3 < p < ∞, then we can complete

the square and apply the map π3 from section 2.2.1 without changing εp, so in that

case
εp(C2) = inf

(x:y:z)∈C′2(Qp)

max(|g(x, z)|p, |g4(x, z)|p)
max(|x|p, |z|p)4 ,

for C′2 a minimal (and Zp-equivalent) 2-covering for p > 3 given by y2 = g(x, z).
This makes our computations simpler for p > 3 and although the picture is the

same in this section for p = 2 or 3, for simplicity we will avoid these cases, so let

g(x, z) = ax4 + bx3z + cx2z2 + dxz3 + z4.

If E has multiplicative reduction and C2 is minimal at p, then vp(C2) = 0, since

otherwise p | I and p | J. We can have up to two singular points on C2 over Fp

and if one is at (x, z) = (0, 1), then p | d, e, but p - c since again this would mean

that I and J both vanish modulo p. In other words, we have pictures for C2(Fp)
consisting of either one component with a node or two components meeting at

two nodes. These nodes are allowed to be regular or non-regular and the only case
where we do not have an end quartic is where we have two components and two

non-regular points defined over Fp.

If lines represent applications of Υ or its inverse and if we assume we start
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at a quartic with two non-regular points, we could view this as a one dimensional

graph whose edges have weighting two:

• • ..... • ..... • •

Υ−1 (C2)oo // Υ

We can view all the vertices apart from those at the two ends (via an Fp trans-

formation) by an equation of the form y2 = x2z2, with both intersection points
being non-regular. Those at the ends are either the same as above with only

one of the singular points being non-regular or they are represented (via an Fp

transformation) by an equation of the form y2 = (x2 + z2)x2. As shown in Lemma

45, end quartics do not yield a contribution away from the non-regular point.

For additive reduction, the diagrams are different. If vp(C2) = 0 and we
have a singular point at (x, z) = (0, 1), then we need p | c for both the invariants to

vanish, so we either have a cusp (given by an equation of the form y2 = (x + z)x3)

or a root of order 4, sometimes called a swallowtail (given by an equation of the
form y2 = x4).

If vp(C2) = 1, then every point is singular and we represent this by a singu-

lar line. We could move any root of g/p modulo p to (0, 1) and apply Υ. Now g/p

could have up to four roots, but at most two repeated roots, where (when moved to

(0, 1)) p2 | d, e. In fact, if we do not have p2 | d and p3 | e, then vp(Υ(C2)) = 0.
The end quartics are those where vp(C2) = 0 or where vp(C2) = 1 and g/p has

only one root over Fp.

We have the following three possible graphs:

• •

•

@@@@@@@

��
��

��
�

..... • ..... •

@@
@@

@@
@

�������

• •
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•

•

��
��

��
�

@@@@@@@
..... • ..... • •

•

• • ..... • ..... • •

Here the vertices of degree more than two represent a singular line with g/p having
more than two roots. These can only happen in vertices adjacent to the end quartics.

If an end of the graph splits, this represents two cuspidal quartics. If it does not, this
represents either a swallowtail quartic or a singular line. Note that the following

special case of the first graph does exist:

• •

•

@@@@@@@

��
��

��
�

@@
@@

@@
@

�������

• •

Let r be the number of non-regular points over Fp. The table below indicates

the possible cases we can have. The third column gives the form of the equation
modulo p via an Fp transformation and the fifth column records whether this gives

an end quartic.

Reduction Diagram Equation over Fp r End quartic?

Multiplicative y2 = x2z2 2 No

y2 = x2z2 0 or 1 Yes

y2 = (x2 + z2)x2 0 or 1 Yes

Additive y2 = pg′(x, z) 2,3 or 4 No
y2 = pg′(x, z) 0 or 1 Yes

y2 = (x + z)x3 0 or 1 Yes

y2 = x4 0 or 1 Yes

In the above graphs, the vertices represent different Zp-equivalence classes

of binary quartic. Sadek has shown that there are only a finite number of
such classes and gives expressions for these depending on the reduction type
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(see [Sad10a], Table 1) and Liu also gives a detailed classification in [Liu94]. For

our purposes however, we can say that after m applications of Υ, we have p2m | a
and pm | b, so p2m | ∆(C2) and therefore m is bounded.

Now let us remove our assumption of p > 3 and consider a general prime.

If C2 has a non-regular point at (0 : 0 : 1), then let i0(C2) be the smallest
non-negative integer such that Υi0(C2) defines an end quartic. Iterating Lemma 46

and using Lemma 45 gives

εp(C2, {(0 : 0 : 1)}) = p−2i0 .

And we could write down a similar expression for any other non-regular points,
so now let us consider the graphs discussed above. If we let i be the maximum

number of edges from the starting vertex to a vertex of degree one, then we have
the following simple and useful expression

εp(C2) = p−2i.

2.6.4 An Algorithm for εp

The investigations in the previous sections allow us to describe an algorithm for
calculating εp.

1. Choose a prime p. Set i1 = i2 = c = 0 and j = 1.

2. Find the non-regular points of C2 and call them {Pi}. If there are none, then
εp(C2) = 1.

3. If there are 4, then εp(C2) = p−2.

4. If there are 3, find which point does not take us to an end quartic using Υ and

move this point to (0 : 0 : 1).

5. If there are 2, set c = 1 and move P1 to (0 : 0 : 1).

6. If there is only one, move it to (0 : 0 : 1).

7. Apply Υ, add one to i j.

8. If we have an end quartic, then we have εp(C2, {P j}) = p−2i j .
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9. If we do not have an end quartic, move any non-regular point (that is not at

(1 : 0 : 0)) to (0 : 0 : 1) and return to step 7.

10. If c = 1, set c = 0, j = 2 and consider the original quartic. Move P2 to

(0 : 0 : 1) and return to step 7.

11. Then εp(C2) = mini(εp(C2, {Pi})).

2.7 Worked Examples

In this section we will illustrate the calculation of εp on three examples.

1. Firstly, consider the binary quartic given by

C2 : y2 + (2xz + 2z2)y = 24x4 − 116x2z2 − 2xz3 − 26z4.

This occurs in the 2-Selmer group of the elliptic curve with reference ‘600a6’
in [Cre97]. It has bad reduction at p = 2, 3 and 5 of types II∗, I1 and I∗8 ,

respectively.

2. Next consider

C2 : y2 + xyz = −53x4 + 486x3z + 531x2z2 + 486xz3 − 53z4.

This occurs in the 2-Selmer group of the elliptic curve with reference ‘897d1’

in [Cre97]. It has bad reduction at p = 3, 13 and 23 of types I12, I10 and I1,

respectively.

3. And finally consider

C2 : y2 + x2y = 268x4 − 965x3z + 1530x2z2 − 292xz3 − 127z4.

This occurs in the 2-Selmer group of the elliptic curve with reference ‘988b1’

in [Cre97]. It has bad reduction at p = 2, 13 and 19 of types IV , I1 and I13,
respectively.
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2.7.1 Local Contributions

Let us compute εp for p < ∞ on the above examples.

1. At p = 2 in the first example, we do not initially have p2 | e2, but we do after

moving the point (1 : 0 : 1) to (0 : 0 : 1). Then we can apply Υ, giving the
new quartic

y2 + 2xyz = 96x4 + 192x3z + 28x2z2 − 67xz3 − 29z4.

We cannot however apply Υ any further here so this is an end quartic.

Returning to the original quartic, if we consider the point (1 : 0 : 0)

(by switching x and z, say), then we can apply Υ and get the quartic

y2 + (4x2 + 2xz)y = −104x4 − 4x3z − 116x2z2 + 6z4.

We cannot apply Υ again, so this means that we have a contribution of 22 on

the original quartic and therefore ε2 = 2−2.

We can then complete the square to consider the remaining primes, so
let

C′2 : y2 = g(x, z) = 96x4 − 460x2z2 − 100z4.

At p = 3, this has one singular point at (1, 0), but it is regular and this is an
end quartic, therefore ε3 = 1.

Taking p = 5, we notice that g has a swallowtail point at (x, z) = (0, 1), since

g ≡ x4. Then, applying Υ to C2, we get

(52 × 96)x4 − (5 × 92)x2z2 − 4z4.

By considering this modulo 5, we can see that it is an end quartic so it has
no contribution. Thus ε5(C2) = 5−2.

2. We have good reduction at 2, so we can complete the square immediately,

giving

C2 : y2 = −212x4 + 1944x3z + 2125x2z2 + 1944xz3 − 212z4.
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At p = 3, this has non-regular points at (1, 1) and (2, 1). We can apply Υ

twice on the first point and three times on the second to get to end quartics,
so we get ε3(C2) = 3−6.

At p = 23, the only singular point of g is at (1, 1), but this turns out

to be a regular point. Therefore there is no contribution, i.e. ε23(C2) = 1.

At p = 13, we have non-regular points at (2, 1) and (7, 1). If we
move the first to (0, 1) and apply Υ, we get the quartic

−(132 × 212)x4 + (13 × 248)x3z + 8701x2z2 + 2076x3z + 144z4,

which still has a non-regular point at (7, 1)17. Carrying out a further ‘flip’ on

this gives

−(134×212)x4−(132×76920)x3z−10457027x2z2−3735246x3z−499859z4.

This now has no non-regular points modulo 13 (apart from (1, 0)) and is

therefore an end quartic18. Returning to the original quartic and considering
the other singular point at (7, 1), we ‘flip’ to get

−(132 × 212)x4 − (13 × 3992)x3z − 19379x2z2 + 2046x3z + 1629z4

and ‘flip’ this on (1, 1) to get

−(134 × 212)x4 − (132 × 15016)x3z − 390035x2z2 − 25824x3z − 612z4.

This is now an end quartic, so we have shown that we can carry out two
‘flips’ in each direction from the original quartic and therefore ε13(C2) =

min(13−4, 13−4) = 13−4.

3. For p = 2, we have one non-regular point at (0 : 1 : 1), but if we apply
Υ, there are no more on the new quartic. Therefore ε2(C2) = 2−2. We then

complete the square and get

C2 : y2 = 1073x4 − 3860x3z + 6120x2z2 − 1168xz3 − 508z4.

17This bears no relation to the (7, 1) in the original quartic.
18I have chosen not to reduce the binary quartics at each stage, since although it would provide

nicer equations, I feel it makes the situation less clear.
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This has no non-regular points at p = 13 (although it does have a regular

singular point at (3, 1)), so ε13(C2) = 1.

At p = 19, we have non-regular points at (6, 1) and (10, 1). We
can ‘flip’ three times on the first and three times on the second to

reach end quartics. This means ε19(C2,C2(F19) \ {(6, 1)}) = 19−6 and
ε19(C2,C2(F19) \ {(10, 1)}) = 19−6, so ε19(C2) = 19−6.

As we can see, there appears to be a connection between the m in reduction type

Im and the size of the contribution to εp. This is no coincidence, since the larger m

is, the more Zp-equivalence classes of binary quartics there are19 and so the more

operations of Υ we are able to carry out.

2.7.2 Putting the Contributions Together

We now have all the ingredients to calculate a bound between the curves C2 and

E2. We use the formula from Theorem 30:

h(P) − 1
4

h(π(P)) ≤ −1
4

∑
p∈B

log(εp(C2)),

for P ∈ C2. To summarise the three examples above, we have

1. ε2 = 2−2, ε3 = 1, ε5 = 5−2 and it can be shown that ε∞ = 11040. The overall

bound is then

1
4

(2 log 2 + 2 log 5 − 9.3093...) = −1.1760...

2. Here ε3 = 3−6, ε13 = 13−4, ε23 = 1 and it can be shown that ε∞ =

364238.9969.... The overall bound is then

1
4

(6 log 3 + 4 log 13 − 12.8056...) = 1.0115...

3. Finally, ε∞ comes out to be 1180.8957... (from the example in section 2.5)
and we also have ε2 = 2−2, ε13 = 1 and ε19 = 19−6. Thus the overall bound

is calculated as

1
4

(2 log 2 + 6 log 19 − 7.0740...) = 2.9947...

19Table 1 in [Sad10a] shows that the relationship is linear.
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2.8 Final Remarks and Examples on Binary Quartics

Note that we are forcing the choice of E that we use for height comparisons to be

E2 given above, so that all the local contributions match up. If we had a different
elliptic curve in mind then we could in principle bound the height difference

between them, but it is expected that we would not mind too much searching on
this equivalent elliptic curve.

Also we should note that for ease we would want to search for points on a

quartic after completing the square rather than a generalised binary quartic, but
fortunately this does not change x or z, so is no problem.

The first thing to note about the examples in the previous section is that

they seem to be pleasingly small (sometimes even negative), so for points of fairly
large height on E, their corresponding points on C2 will be significantly smaller.

Next let us turn our attention to choosing an equivalence class of quartics

on which to search so as to give the smallest bound. Let n be the number of
Zp-equivalence classes and let i1 and i2 be the number of steps from our quartic

to each end of the graph of equivalence classes. Then n = i1 + i2 + 1 if C2 has
multiplicative reduction and n = i1 + i2 + 1 + l for l = 0, 1 or 2 if C2 has additive

reduction (recalling that the ends of the graph can split in this case). If we are
allowed to choose our quartic C2, then we can obtain a better bound by choosing

it to be in the ‘middle’ equivalence class, i.e. so that i0 = i0 or i0 + 1. Then for

multiplicative reduction we get εp(C2) = p−k for k = n − 1 if n is odd and k = n

if n is even. For additive reduction, we have a number of possibilities; if l is the

number of split ends of the graph, then we can choose C2 so that k is given in the
following table.

Parity of n Mult. Red. Add. Red: l = 0 l = 1 l = 2

Odd n − 1 n − 1 n − 1 n − 3
Even n n n − 2 n − 2

To illustrate this, consider the third example above

C2 : y2 + x2y = 268x4 − 965x3z + 1530x2z2 − 292xz3 − 127z4.

57



This lies in the fourth (out of 7) Z19-equivalence class. The following are reduced

representatives20 for each of the equivalence classes

y2 = 49x4 − 720x3z − 774x2z2 + 3064xz3 + 17297z4,

y2 = 68x4 + 352x3z + 4608x2z2 + 20xz3 − 4687z4,

y2 = x4 − 544x3z + 1122x2z2 + 9672xz3 + 28697z4,

y2 = 1073x4 − 3860x3z + 6120x2z2 − 1168xz3 − 508z4,

y2 = 161x4 + 2312x3z − 270x2z2 − 1968xz3 + 1897z4,

y2 = 4x4 − 368x3z + 312x2z2 + 12548xz3 + 71617z4,

y2 = 233x4 − 636x3z − 768x2z2 + 6688xz3 + 1444z4.

The values of ε∞ do not vary greatly amongst these curves and are given by

5.0603..., 5.9943..., 4.5879..., 7.0740..., 7.2197..., 3.6740..., 5.1523...,

respectively. However, although there is no change in εp other than at p = 19
(where consecutive classes differ by 2 log 19), this has a large effect on the overall

bounds for h(P) − 1
4 h(π(P)), which are given by

7.9148..., 6.2091..., 5.0885..., 2.9947..., 4.4305..., 6.7892..., 7.8918...,

respectively.

So we can see that we give ourselves the best chance of finding a point if

we search on the middle equivalence class for each prime and the benefit of this
dominates any change at the infinite place. However this does not guarantee that

any particular point will always be smallest on a quartic in the middle equivalence
class. For example, the representative of the first equivalence class contains the

point (1 : 7 : 0), but this has a much larger height on the other representatives. We
will expand on this idea in the section on 4-coverings.

The bound we compute seems to be considerably better than that achieved

using the resultant method in section 2.3. This is most extreme when there is little
or no contribution from the finite primes. Take for example the elliptic curve and

20Note that we have completed the square and therefore these are not minimal at 2, but we know
ε2 will remain unchanged.
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binary quartic below.

E2 : y2 + xy = x3 + x2 − 2x + 1,

C2 : y2 + (x2 + xz + z2)y = −x3z − x2z2 + 2xz3 + z4.

Even though this has bad primes at p = 5, 7 and 19, there is no contribution from

any of them. The bound therefore comes out to be 0.1234... If instead, we use the
formula at the start of section 2.3, then we would get a bound of:

−1
4

log
min(|4G|, |G̃|)|Res(4G, G̃)|

22053|4G|4|G̃|4

 = −1
4

log
(
5272192

22757

)
= 4.8210...

This shows that we make a marked improvement on previous methods.
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3 The Intersection of Two Quadrics

Although the equations are a bit more complicated, we will now look at 4-coverings
instead of 3-coverings, since we can make use of the fact that to get to the elliptic

curve from a 4-covering, we can map via a 2-covering.

3.1 4-Descent

Four descent is effectively a second 2-descent carried out on a 2-covering. Because

of Lemma 13 in section 1.3.1, it should be more powerful, i.e. points will be
easier to find on 4-coverings if they exist. We will assume where necessary that

we have not found a point via 2-descent. We will follow closely the methods
of [MSS96], so for this section let C2 be given by the binary quartic y2 = g(x, z) =

ax4 + bx3z+ cx2z2 + dxz3 + ez4 with integer coefficients. The reader should bear in
mind the sections 1.3 and 2.1 since the method bears many similarities to the n = 2

case. Here we define our algebra Q[θ] in terms of elements of the 2-Selmer group
rather than the elliptic curve, so it now has degree 4. It is a field or product of fields

as before.

Definition 47 The algebra associated to C2 is given by

Q[θ] =
Q(T )
(g(T ))

= L1 ⊕ ... ⊕ Lt,

where the Li are number fields given by Q(θi) for θi non-pairwise-conjugate roots
of g. Let us define the map µ:

µ : C2(Q) −→ Q[θ]∗

(Q[θ]∗)2Q∗

(x, y, z) 7−→ x − θz mod (Q[θ]∗)2Q∗.

We have to quotient out by Q∗ in the image, since now C2 is unramified above

infinity as a covering of P1. We may assume (x, z) ∈ Z2 \ {(0, 0)} and that x and z

are coprime.

Writing (x − θiz)OLi = aib
2
i as a product of ideals with ai square-free and so

that
∏t

i=1 NLi/Q(ai) ∈ aQ∗
2
, and letting S i be the set of prime ideals p of Li such

that p | a∆(g), we have the following lemma.
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Lemma 48 For Li, ai and S i defined as above, if p | ai is a prime ideal of Li, then

p ∈ S i.

Proo f : This can be found on page 9 of [MSS96].

�

Definition 49

Li(S i, 2) = {ξ ∈ L∗i /(L
∗
i )2 such that Li(

√
ξ )/Li is unramified away from S i}.

To see that this is a finite set, see Proposition 1.6 on p194 of [Sil09]. Now suppose
we have an element δi ∈ im(µ). Then it must come from a point (x : y : z) ∈ C2(Q)

such that
x − θiz = δiγ

2
i ,

for δi ∈ Li(S i, 2) and γi ∈ L∗i . We reject all sets of equations for which we get∏t
i=1 NLi/Q(δi) < aQ∗

2
.

If g(x, z) is irreducible, then since we can remove coefficients of θ4 and
above using the equation for g(x, 1), we have

x − θz = δ(u0 + u1θ + u2θ
2 + u3θ

3)2

= Q3(u0, u1, u2, u3) + Q4(u0, u1, u2, u3)θ + Q1(u0, u1, u2, u3)θ2 + Q2(u0, u1, u2, u3)θ3.

Thus, equating coefficients of θ2 and θ3, we must have a point on the curve

C4 : Q1(u0, u1, u2, u3) = Q2(u0, u1, u2, u3) = 0,

for two quaternary quadratic forms Q1 and Q2 depending on δ, i.e.

C4 : a11x2
1 + a12x1x2 + a13x1x3 + a14x1x4 + a22x2

2 + a23x2x3 + a24x2x4+

a33x2
3 + a34x3x4 + a44x2

4 = 0,

b11x2
1 + b12x1x2 + b13x1x3 + b14x1x4 + b22x2

2 + b23x2x3 + b24x2x4+

b33x2
3 + b34x3x4 + b44x2

4 = 0.

If g(x, z) is not irreducible, then it is either the product of two irreducible quadratic
factors or it has a linear term. We will ignore the latter case, since this would mean
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we had found a point and that 2-descent had been successful, so let us suppose we

obtain equations

x − θ1z = δ1(u1 + θ1u2)2,

x − θ2z = δ2(u3 + θ2u4)2.

Then equating constant and linear coefficients (replacing θ2
i terms by linear expres-

sions from their minimal polynomials), we obtain

q1(u1, u2) =x = q2(u3, u4),

q3(u1, u2) =z = q4(u3, u4),

for quadratic forms q1, q2, q3 and q4. These again give us the intersection of two

equations in the same form as C4 above. We will refer to these objects as quadric
intersections and investigate their properties in the following section.

3.2 Quadric Intersections and Their Invariant Theory

A good place to start for the theory of quadric intersections is [AKM+01], where
the authors aim to give an overview of 4-coverings in a similar manner to the way

in which they treat 2- and 3-coverings.

Definition 50 A quadric intersection (or QI) is a pair of homogeneous equations

(Q1,Q2) of degree two in four variables. The curve C4 defined by (Q1,Q2) in P3 is

given by

C4 : Q1(x1, x2, x3, x4) = Q2(x1, x2, x3, x4) = 0.

We will say C4 is integral if it has integer coefficients and we will denote by C4(K)
the set of K-rational points on C4. As we saw at the end of the previous section,

these objects have 20 coefficients ai j, bi j for i, j ∈ {1, 2, 3, 4} and i ≤ j. They can
often be more easily managed in the form of two 4 × 4 symmetric matrices

(x1, x2, x3, x4)T V1(x1, x2, x3, x4) = (x1, x2, x3, x4)T V2(x1, x2, x3, x4) = 0,
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for

V1 =


2a11 a12 a13 a14

a12 2a22 a23 a24

a13 a23 2a33 a34

a14 a24 a34 2a44

 , V2 =


2b11 b12 b13 b14

b12 2b22 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 .

Note that the matrices V1 and V2 only define the QI with coefficients in a ring R if

char(R) , 2. For convenience, if we wish to specify the equations involved, we
may write the QI as (Q1,Q2) or (V1,V2) interchangeably.

There are two actions on the space of QIs; the first by GL2 to move through the

pencil of quadrics and the second by GL4 to change co-ordinates.

Definition 51 Given a QI over a ring R given by matrices (V1,V2),

S (V1,V2) = (aV1 + bV2, cV1 + dV2), for S =

 a b

c d

 ∈ GL2(R)

and M(V1,V2) = (MT V1M,MT V2M), for M ∈ GL4(R).

We usually amalgamate these into one transformation, so for S ∈ GL2(R) and

M ∈ GL4(R), the transformation t =< S ,M > acts on C4 by giving the curve t(C4)

defined by

t(Q1,Q2) = t(V1,V2) = S (M(V1,V2)).

Let a(M)
i j , b(M)

i j be the coefficients of M(Q1,Q2) and similarly for the action of S

or even of the transformation t =< S ,M >. We say that two 4-coverings are K-
equivalent if they are related by such a transformation t defined over K. Given

the GL4 action, it now makes sense to change co-ordinates to ensure that if our QI
contains a point, then it is at (1 : 0 : 0 : 0), which will be useful in later sections.

Now, the underlying 2-covering (in (1 : 2 : 1)-weighted projective space) is given
by

C2 : y2 = g(x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4 = det(V1x + V2z), (10)

the coefficients of which are invariant under the action of S L4 on the QI. Note that

this is not a generalised binary quartic, but these will come into play in section
3.5.2. In general, we have the following definition of an invariant.
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Definition 52 An invariant of C4 (with coefficients ai j, bi j) of weight w and degree

n is a homogeneous polynomial f of degree n such that

f (a(t)
i j , b

(t)
i j ) = det(S )w det(M)w f (ai j, bi j),

for all t =< S ,M > with S ∈ GL2(K),M ∈ GL4(K).

The only expressions which remain invariant under this definition are those which
are polynomials in I and J (as defined in section 2.2, but now in terms of the

coefficients of the QI via equation (10)). In fact, for a general transformation
t =< S ,M > acting on C4, the discriminant becomes det(S )12 det(M)12∆(C4).

This means that working over Q, t only acts on minimal 4-coverings if
det(S ) det(M) = ±1.

Then we have the following definition of a covariant of a QI.

Definition 53 Fix R = (x1 : x2 : x3 : x4). A covariant of weight w of a QI given by

(Q1,Q2) is a polynomial N such that

N(a(M)
i j , b(M)

i j ,R) = det(M)wN(ai j, bi j,M(R)), (11)

for all M ∈ GL4(K).

This allows us to introduce two important examples.

Definition 54 Let (V1,V2) be the matrices defining a QI and let det(V1x + V2z) =
ax4 + bx3z+ cx2z2 + dxz3 + ez4. The two 4× 4 matrices U1 and U2 in the following

equation

adj(adj(V1)x + adj(V2)z) = a2V1x3 + ax2zU1 + exz2U2 + e2V2z3 (12)

define the two covariant quadratic forms

Ti(x1, x2, x3, x4) = (x1, x2, x3, x4)T Ui(x1, x2, x3, x4),

for i ∈ {1, 2}.

To check that these are indeed covariants and that they are of weight 2, we replace

V1 and V2 in equation (12) by MT V1M and MT V2M, and U1 and U2 are now
given in terms of the coefficients a(M)

i j , b(M)
i j . Note also that a and e are replaced
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by det(M)4a and det(M)4e. Some calculation then gives us an expression like

equation (11) with w = 2, so they are indeed covariants.

Another lengthy calculation (see [AKM+01]) then shows that forH = ∂(Q1,Q2,T1,T2)
∂(x1,x2,x3,x4)

(a covariant of weight 5), we have the following syzygy whenever Q1 = Q2 = 0.

H2 = aT 4
1 − bT 3

1 T2 + cT 2
1 T 2

2 − dT1T 3
2 + eT 4

2 .

Comparing this with (10), we have the map

ϕ : C4 −→ C2 (13)

(x1 : x2 : x3 : x4) 7−→ (T1,H ,−T2)

and therefore the following diagram

C4 ↪→ P3

ϕ ↓
C2

x−→ P1

π ↓
E

x−→ P1

Here π is the usual 2-covering map and x refers to taking the x co-ordinate of a
point on E or C2. It is then a fact that π ◦ ϕ is the required 4-covering map.

Now recall that a general action on the 2-covering is given by < λ, A > for

λ ∈ K∗ and A ∈ GL2(K). We have the following lemma.

Lemma 55 Let (V1,V2) be a QI over K and g(x, z) be its underlying binary quartic

as described above. Also let M ∈ GL4(K), S ∈ GL2(K) and t =< S ,M >. Then the

underlying binary quartic of t(V1,V2) is given by s(g(x, z)) for s the transformation

< det(M), S T >.
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Proo f : For M ∈ GL4(K), the underlying binary quartic is given by

det(MT V1Mx + MT V2Mz) = det(MT (V1x + V2z)M)

= det(M)2 det(V1x + V2z)

= det(M)2g(x, z).

The underlying binary quartic for S (V1,V2) is given by

det((aV1 + bV2)x + (cV1 + dV2)z) = det((ax + cz)V1 + (bx + dz)V2),

so the effect is to replace

 x

z

 with S T

 x

z

, i.e. the effect of the transformation

t is to act by < det(M), S T > on the underlying binary quartic.

�

Definition 56 A 4-covering C4 is said to be minimal at p if vp(∆(C4)) is minimal

amongst all integral 4-coverings Qp-equivalent to C4.

In particular, this means that if C4 is minimal at p, then C4 is a curve. The
paper [CFS09] is the culmination of a collection of papers by the authors (often

individually) and gives a complete treatment of the minimisation and reduction of
both binary quartics and QIs.

The reduction process tries to get the 4-covering as near as possible to be-

ing a Hesse form with small coefficients (over R); i.e. one of the form
a(x2

0 + x2
2) + bx1x3 = a(x2

1 + x2
3) + bx0x2 = 0 for a, b ∈ C. As in the case of

2-coverings, this amounts to reducing a lattice. The following lemma will show
that having a point on C4 which is a root of the covariants means that C4 is

singular.

Lemma 57 Let C4 be a 4-covering with equations given by (Q1,Q2) and let T1

and T2 be the covariants defined above. If we have

Q1(R) = Q2(R) = T1(R) = T2(R) = 0,

for some point R ∈ C4, then the discriminant ∆(C4) = 0.

Proo f : Since T1 and T2 are covariants, let us first assume that R = (1 : 0 : 0 : 0),

which we can do by an SL4 transformation (that does not affect ∆). By an SL2

66



transformation, we may assume a14 = 0, say. Then by further transformations on

x2, x3 and x4, we may also assume that a12 = b12 = 0 and a final SL2 transformation
ensures b13 = 0, so we have matrices for C4 in the following form:

V1 =


0 0 a13 0

0 2a22 a23 a24

a13 a23 2a33 a34

0 a24 a34 2a44

 , V2 =


0 0 0 b14

0 2b22 b23 b24

0 b23 2b33 b34

b14 b24 b34 2b44

 .

Some calculation then shows that the leading coefficients of T1 and T2 are given by

a2
13b2

14b22 and a2
13b2

14a22 respectively. Since T1(R) = T2(R) = 0, we have at least
one of the following three possibilities; either a13 = 0, b14 = 0 or a22 = b22 = 0.

From equation (10), we know that in our case a13 divides the first column of the
matrix V1, so it divides a and (since b11 = 0) b in the two covering. Similarly

b14 divides d and (since a11 = 0) e. Then, by considering the equations for the
invariants (equation (6)), we can see that if either were 0, then ∆ = 0. For the

other case, if we assume a13 = b14 = 1 and a22 = b22 = 0, then the invariants are
given by 24I = ((a23 − b24)2 + 4a24b23)2 and 25J = −((a23 − b24)2 + 4a24b23)3, so

∆ = 1
27 (4I3 − J2) = 0 and the lemma is proved.

�

Indeed this proof shows not only that ∆ = 0, but also that C4 contains either the

line {x3 = x4 = 0} or the singular point R.

3.3 Reduction Diagrams

In this section, we will assume our QI is defined over Zp. If we suppose E has
bad reduction at some prime p, then C4 is singular and it will be useful to know its

structure over Fp.

Definition 58 A point P ∈ C4 is singular if and only if the matrix given by

J(P) =
∂(Q1,Q2)

∂(x1, x2, x3, x4)
(P)

has rank at most 1 over Fp.

To gain a more intuitive grasp of these points, suppose P = (1 : 0 : 0 : 0) ∈ C4 is

singular, so the leading coefficients of Q1 and Q2 are both divisible by p. By a
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change of co-ordinates (not involving x1), we may assume p | a12, a13 and then

J(P) looks like  0 0 0 a14

0 b12 b13 b14


over Fp. So for this to have rank at most 1, we would need p | b12 and p | b13 or
we would need p | a14. Either way (by an SL2(Fp) transformation if necessary) we

can write the matrices for C4 in the form

V1 =


0 0 0 0
0 2a22 a23 a24

0 a23 2a33 a34

0 a24 a34 2a44

 , V2 =


0 b12 b13 b14

b12 2b22 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 .

Definition 59 Let P = (1 : 0 : 0 : 0) ∈ C4(Fp) be a singular point. Then P is a non-

regular point if we can write the matrices for C4 in the above form with p2 | a11.

The curve C4 could contain more than one singular point over Fp, in which case it

can be viewed as a number of irreducible components.

Definition 60 A component Γ is a smooth (or multiplicity 1) component if it con-

tains only a finite number of singular points over Fp.

We only ever have a finite number of non-regular points; in fact at most 4.

Definition 61 The degree d(Γ) of a component Γ is the number of its points of

intersection with a generic hyperplane.

A component of degree 1 is a line L ⊂ P3(Fp) given by two linear equations

l1x1 + l2x2 + l3x3 + l4x4 = l5x1 + l6x2 + l7x3 + l8x4 = 0.

Up to permutation of co-ordinates, this can be rewritten as

m1x1 + m2x2 + x3 = m3x1 + m4x2 + x4 = 0,

so by a change of co-ordinates, we may assume it is given by L = {x3 = x4 = 0}.
If L ⊂ C4, then we need Q1(x1, x2, 0, 0) ≡ Q2(x1, x2, 0, 0) ≡ 0 for all x1, x2, so C4
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can be written as

V1 =


0 0 a13 a14

0 0 a23 a24

a13 a23 2a33 a34

a14 a24 a34 2a44

 , V2 =


0 0 b13 b14

0 0 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 .

A component of degree two is a conic C ⊂ P3(Fp) given by a linear and a degree

two equation which, by a change of coordinates, can be written as

x1 = f (x2, x3, x4) = 0,

for some quadratic form f . If f has rank less than 3, then we refer to C as a

‘degenerate’ conic. If C ⊂ C4, then we can write V1 as
a11 a12 a13 a14

a12 0 0 0

a13 0 0 0
a14 0 0 0


and Q2 is given by x1l(x2, x3, x4) + f (x2, x3, x4) for some linear form l. The

reduction C4 can contain components of degree three or four (a twisted cubic or a
singular quartic), but their matrix forms do not simplify nicely.

There are a finite number of possibilities for describing the components of

C4
21. A complete classification of singular QIs is given in [HP94] (see

also [DLLP08] for a very readable modern classification) containing fourteen
different combinations of lines, conics and components of higher degree, distin-

guishing between cases where there are a different number of intersection points
between the components.

We will now mention the special case of multiplicative reduction. In many

ways split multiplicative reduction is the most interesting form of reduction, since
the component group E(K)/E0(K) (studied in a computational setting in [Cre08])

is largest22. Some calculation shows that if C4 contains a singular (multiplicity

21If we were to suitably define the multiplicity m(Γ) of a component, then an application of Be-
zout’s Theorem can show we must have

∑
Γ d(Γ)m(Γ) = 4, giving a finite number of possibilities.

22It is isomorphic to Z/NZ, whereas for other reduction types, the group has order at most 4.
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> 1) line or conic, then p divides both of the invariants I and J, so we have additive

reduction. Therefore the classification of possible combinations for multiplicative
reduction is much shorter, since all the components are smooth. Furthermore, all

the singular points are nodes, so none of the components meet tangentially. Now
we have the following five possibilities23:

Quartic. Cubic, line. Two conics. Conic, two lines. Four lines.

Eventually, these will form five different vertices in a graph of equivalence
classes, but first let us discover how to bound heights on 4-coverings.

3.4 Bounding Heights on Four Coverings

Let us reiterate the definition of height from section 1.2.

Definition 62 Let the point P be given by (x1 : x2 : x3 : x4) ∈ P3(Q). Then the

height of P is defined as the product of local contributions from the finite places

and∞, i.e.

H(P) =
∏

p∈MQ

max(|x1|p, |x2|p, |x3|p, |x4|p).

Using the diagram from section 3.2 to calculate the height difference, we will now
show how a naive approach to a bound between the height on E and the height on

the 4-covering can be achieved via the theory of resultants.

3.4.1 A Bound Using Resultants

Lemma 63 For ϕ the 4-to-2-covering map in equation (13) and any R =

(x1 : x2 : x3 : x4) ∈ C4(Q), we can find (using the theory of resultants) a constant β

such that

H(ϕ(R)) ≥ βH(R)2.

23For reduction type In, the special fibre of the minimal proper regular model can be viewed as
an n-gon (see Corollary 15.2.1 in [Sil09]). Here some of the components are contained above the
singular points, which give us the five possibilities.
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Proo f : Recall the definition of the 4-covering map in section 3.2, let (Q1,Q2)

be the equations for C4 and let R be scaled so that the co-ordinates are coprime
integers. Now, there exist polynomials f1, f2, f3 and f4 of degree 3 such that

| f1(x)Q1(x) + f2(x)Q2(x) + f3(x)T1(x) + f4(x)T2(x)| = c|xl|5,

for c the resultant of Q1,Q2,T1 and T2 (the fi depend on the choice of co-ordinate,

so we have an equation like this for each l ∈ {1, 2, 3, 4}; see section 1.4.1). This
means that if T1(R) and T2(R) have a common factor for some point on C4, then

this would divide gcd(cx5
1, cx5

2, cx5
3, cx5

4) = c and so we have

cH(ϕ(R)) ≥ max(|T1(R)|, |T2(R)|) = max(|T1(R)|, |T2(R)|, |Q1(R)|, |Q2(R)|)

and

max(|T1(R)|, |T2(R)|, |Q1(R)|, |Q2(R)|) max(| f1(R)± f2(R)± f3(R)± f4(R)|) ≥ c|xl(R)|5,

where the second maximum is over all combinations of ±. So

H(ϕ(R)) ≥ |xl(R)|5
max(| f1(R) ± f2(R) ± f3(R) ± f4(R)|)

and if qm(R) =
∑

i, j,k∈{1,2,3,4} qmi jk xix jxk is one of the polynomials f1(R) ± f2(R) ±
f3(R) ± f4(R), then

|qm(R)| ≤
∑
i, j,k

|qmi jk||xix jxk| ≤ max(|x1|, |x2|, |x3|, |x4|)3
∑
i, j,k

|qmi jk| = H(R)3s(qm),

for s(qm) the function summing the coefficients of the polynomial qm(R). Therefore

max
m

(|qm(R)|) ≤ H(R)3 max
m

(s(qm)) = H(R)3M,

for some M > 0 and we have (for i = 1 to 4)

H(ϕ(R)) ≥ |xl|5
MH(R)3 for each l

≥ H(R)2

M
≥ βH(R)2.

�
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We will show an example of a bound using the resultant method in section 3.7.

3.4.2 The Natural Analogue of εp

Recall the definition of εp used in the sections on 2-coverings, which we will now

refer to as:

ε(2)
p (C2) = inf

(x:y:z)∈C2(Qp)

max(|4G(x, z)|p, |G̃(x, z)|p)
max(|x|p, |z|p)4

 ,
for C2 defining a generalised binary quartic and G and G̃ given in section 2.2.1.

Now let us define a new quantity.

Definition 64

ε(4)
p (C4) = inf

R∈C4(Qp)

max(|T1(R)|p, |T2(R)|p)

maxi(|xi|2p)

 ,
for the covariants T1 and T2.

This provides us with a bound for the height difference between a point on a 4-
covering and its image on the elliptic curve.

Lemma 65 The infimum in the definition for ε(4)
p exists and is non-zero.

Proo f : Let us consider four compact subsets:

Hp,i ={(x1 : x2 : x3 : x4) ∈ P3(Qp) : |xi|p = 1, |x j|p ≤ |xi|p for all j}.

These are compact, since they are isomorphic to Z3
p. This allows us to define four

infima,

ep,i = inf
R∈Hp,i

max(|T1(R)|p, |T2(R)|p).

Now, if the infimum in the definition of ε(4)
p is 0, then mini(ep,i) = 0. Assuming

ep,i = 0 for some i, then in a similar way to the proof of Lemma 37 we have

T1(R) = T2(R) = Q1(R) = Q2(R) = 0 for some R ∈ P3(Qp), which in turn would
imply C4 is singular by Lemma 57, so we are done.

�
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Lemma 66 For a fixed R = (x1 : x2 : x3 : x4) ∈ C4(Q) and C2 the underlying 2-

covering, we have

h(R) − 1
8

hπϕ(R) ≤ −1
2

∑
p

log ε(4)
p (C4) − 1

8

∑
p

log ε(2)
p (C2), (14)

with the sums taken over all primes and∞.

Proo f : Treating ϕ(R) as a point on a 2-covering, we have

H(π(ϕ(R))) ≥ H(ϕ(R))4
∏

p

ε(2)
p (C2)

=

∏
p

ε(2)
p (C2)

∏
p

max(|T1(R)|p, |T2(R)|p)4

≥
∏

p

ε(2)
p (C2)(ε(4)

p (C4))4 max(|x1|2p, |x2|2p, |x3|2p, |x4|2p)4

= H(R)8
∏

p

ε(2)
p (C2)(ε(4)

p (C4))4,

which together with Lemma 65 gives us the result by taking logs.

�

3.4.3 The Infinite Place

Now, taking p to be∞,

ε(4)
∞ (C4) = inf

R∈C4(R)

(
max(|T1(R)|, |T2(R)|)

maxi(|xi(R)|2)

)
.

Without loss of generality, let us assume x4 = 1 gives the largest |xi| for a given

point R = (x1 : x2 : x3 : 1) and let T (R) = max(|T1(R)|, |T2(R)|). Then we are look-
ing for the infimum of the function T (R) on the curve given by Q1(R) = Q2(R) = 0.

So we have the following Lagrangian to solve:

L = T − λ1Q1 − λ2Q2.

Using ∂L
∂xi
= ∂L

∂λ j
= 0 for i ∈ {1, 2, 3}, j ∈ {1, 2}, we can solve for λ1 and λ2 in

the first three equations and substitute back in to the others. Some rearrangement
gives:

Q1(R) = Q2(R) =
∂(Q1,Q2, T )
∂(x1, x2, x3)

(R) = 0.
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This only fails when T is not differentiable at R or when R lies on the boundary of

the box |xi| ≤ 1 for i ∈ {1, 2, 3}. Note that if one component of C4 lies completely
within the box, then it must have a turning point and so it will be counted. There-

fore in order to find the infimum, we must include some exceptional points, i.e. we
are finding all solutions in R3 with co-ordinates ≤ 1 to

Q1(R) = Q2(R) = 0 and either
∂(Q1,Q2,T )
∂(x1, x2, x3)

(R) = 0,

or T1(R) ± T2(R) = 0,

or xi = 1 for i ∈ {1, 2, 3}.

Lemma 67 The above system of equations has only a finite number of solutions

for R ∈ R3 with all co-ordinates ≤ 1.

Proo f : Firstly note that we are done if we can show that we only have a finite
number of solutions over C3 to

Q1(R) = Q2(R) = 0 and either
∂(Q1,Q2,T1)
∂(x1, x2, x3)

(R) = 0,

or
∂(Q1,Q2,T2)
∂(x1, x2, x3)

(R) = 0,

or T1(R) ± T2(R) = 0,

or xi = 1 for i ∈ {1, 2, 3}.

To prove this, we will need Lemma 57 and the following lemma.

Lemma 68 For a hyperplane H and a 4-covering C4, the intersection of C4 with

H contains a finite number of points.

Proo f : This is a consequence of Bezout’s Theorem (see p47 of [Har77]), which

states that two plane curves (in our case Q1 ∩ H and Q2 ∩ H) without a common
component (which these do not, else C4 would be singular) have as many solutions

over C as the product of their degrees.

�

Tackling the last set of equations first, we have the hyperplane H = {xi = 1}
intersecting the curve given by Q1(R) = Q2(R) = 0, so this has a finite number of
points by Lemma 68.
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For the other equations, since T1 and T2 are covariants, we may act by

transformations and may assume24 that Q1 and Q2 are given projectively by

b(x2
1 + x2

3) + x2x4 = b(x2
2 + x2

4) + x1x3 = 0,

for some non-zero b ∈ C. Some calculation then shows that

T1 =b(x2
2 + x2

4) + 16b4x1x3,

T2 =b(x2
1 + x2

3) + 16b4x2x4.

Now we pass back to affine co-ordinates by letting x4 = 1. We can substitute
x2 = −b(x2

1 + x2
3) into the equation for Q2 and also into each of the four equations

∂(Q1,Q2,T1)
∂(x1,x2,x3) , ∂(Q1,Q2,T2)

∂(x1,x2,x3) , T1+T2 and T1−T2 respectively, which gives us the following
four sets of equations:

b3(x2
1 + x2

3)2 + x1x3 + b =8b3(1 − 16b4)(x4
1 − x4

3) = 0,

b3(x2
1 + x2

3)2 + x1x3 + b =2b(1 − 16b4)(x2
1 − x2

3) = 0,

b3(x2
1 + x2

3)2 + x1x3 + b =b3(x2
1 + x2

3)2 + 16b4x1x3 + b + b(16b4 − 1)(x2
1 + x2

3) = 0,

b3(x2
1 + x2

3)2 + x1x3 + b =b3(x2
1 + x2

3)2 + 16b4x1x3 + b + b(1 − 16b4)(x2
1 + x2

3) = 0.

If we assume 16b4 , 1, then we can get x2
1 = ±x2

3 in the first two sets of equations,
which is a collection of hyperplanes and this yields a finite number of points by

Lemma 68. The remaining sets reduce to

b3(x2
1 + x2

3)2 + x1x3 + b =x1x3 + b(x2
1 + x2

3) = 0,

b3(x2
1 + x2

3)2 + x1x3 + b =x1x3 − b(x2
1 + x2

3) = 0.

By substituting b2(x2
1 + x2

3)2 = x2
1x2

3 into the left hand equation, we see that these

are solved whenever bx2
1x2

3 + x1x3 + b = 0, so substituting x1 =
1

2bx3
(−1 ±

√
b − 4)

into x1x3 − b(x2
1 + x2

3) = 0 say, gives at most 4 solutions for x3 and therefore a

finite set of solutions for R.

Here, the discriminant of C4 is given by b4(16b4 − 1)4, so if 16b4 = 1 then
C4 is singular, so the lemma is proved.

�
24See p28 of [Hul86] for how to attain this form.

75



Once Gröbner bases have been called upon, solving a system of three equations

like this is simply a case of finding the roots of various univariate polynomials.
Having found these solutions when we set x4 = 1, we also need to solve a system

of equations for each of x1 = 1, x2 = 1 and x3 = 1 and find the infimum of these.

Now, let us demonstrate the calculation at the infinite place on a particular
example. Consider the elliptic curve given by reference ‘897f2’ in [Cre97]. This

has two 4-descendant curves and we will consider the one given by

Q1 = −2x1x2 − 2x1x4 + x2
2 − 2x2x4 + 4x2

3 + 2x3x4 + x2
4,

Q2 = 2x1x2 + 2x1x3 + 2x1x4 − 2x2x3 − 2x2x4 + x2
3 − 2x3x4 + 2x2

4.

First we set x1 = 1 in Q1,Q2, T1 + T2 and T1 − T2 and we calculate ∂(Q1,Q2,T1)
∂(x2,x3,x4) and

∂(Q1,Q2,T2)
∂(x2,x3,x4) . Then we can calculate the seven ideals Il ⊂ Zp[x2, x3, x4] given by Q1,

Q2 and either T1 ± T2, xi = 1 or one of the partial derivatives. For example,

I1 =< Q1,Q2, T1 + T2 >=<Q1,Q2, 128 + 192x2 + 384x3 + 320x4 + 288x2
2

− 384x2x3 − 576x2x4 + 1024x2
3 − 64x3x4 + x2

4 > .

Then we compute the Gröbner basis of each ideal, which is a basis given by

< x2 + p1(x4), x3 + p2(x4), p3(x4) >,

for polynomials p1, p2 and p3. We find the roots Xi of p3 and evaluate the
polynomials p1 and p2 there to give us points (1,−p2(Xi),−p3(Xi), Xi) to consider.

We discard all points that do not have all values ≤ 1.

After performing this routine on the seven ideals, we have a list of points
with x1 = 1 (in our example we get 12 such points). Repeating the process for

the affine spaces when x2 = 1, x3 = 1 and x4 = 1 gives us an even larger set
of points (in our case 19). Then we find the value of max(|T1(R)|, |T2(R)|) for

each R in the list and compute the minimum of these values. This is our desired ε(4)
∞ .

In our case, the minimum is 64 at the root of (T1(1, x2, x3, x4) − T2(1, x2, x3, x4))
given by (0, 0, 0). Then 1

2 log ε(4)
∞ = 2.0794...

Now let us turn our attention to p < ∞.
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3.5 A New Definition for the Finite Places

When calculating the effect of certain operations (defined later) on ε(4)
p (Q1,Q2),

unfortunately we cannot get an exact answer, since the covariants T1 and T2 behave
differently under these transformations. So, in the search for precision, we are

motivated to go back a step and make the following definition (for Q1 and Q2 the
equations for C4 with integer coefficients).

Definition 69 Let p > 3 be a prime and X′ ⊂ C4(Qp) be the set of points above

X ⊆ C4(Fp), then define

εp(Q1,Q2; X) = inf
R∈X′

(
max(γp(R), δp(R))

max(|xi(R)|p)8

)
,

for γp(R) =|4g(T1(R),T2(R))|p,
δp(R) =|3g4(T1(R),T2(R))|p.

The inputs for this quantity will make it easy to distinguish from the εp for n = 2.
The definition will be extended to p = 2 and 3 in the next section, but this uses

different γp and δp. In projective space, we have freedom to choose how we scale a

point R, so for this definition to make sense we must fix the co-ordinates of R before
we enter them in the equations for T1 and T2. Then εp is independent of scaling

by virtue of the fact that the top and bottom of the infimum are both homogeneous
of degree 8. By convention, we also set εp(Q1,Q2; ∅) = 1. This means that if we

have C4(Fp) =
⨿

Xi for some finite union of components {Xi}, then

εp(Q1,Q2; C4(Qp)) = min
i
εp(Q1,Q2; Xi)

and we write εp(Q1,Q2) for εp(Q1,Q2; C4(Qp)). By the same argument as in the

proof of Theorem 30, this gives us the following bound.

Theorem 70 For R ∈ C4(Q) and πϕ the 4-covering map taking C4 to its Jacobian

EIJ , we have

h(R) − 1
8

hπϕ(R) ≤ −1
8

∑
p

log εp(Q1,Q2).
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3.5.1 Properties of εp.

Still working with p > 3, we shall prove some results about this new quantity.

Lemma 71 For εp defined as above, let C4 be given by (Q1,Q2) with integer coef-

ficients and let X ⊆ C4(Fp) be any subset. Then we have εp(Q1,Q2; X) ≤ 1.

Proo f : From Lemma 37, we have

inf
P∈C2(Qp)

(
max(|4g(P)|p, |3g4(P)|p)

max(|x(P)|p, |z(P)|p)4

)
≤ 1,

since g and g4 have integer coefficients. We can apply this to P = (T1(R), T2(R)) ∈
C2(Qp), so we are left to check that for a point R ∈ C4(Qp), we have

max(|T1(R)|p, |T2(R)|p)
max(|x1(R)|p, |x2(R)|p, |x3(R)|p, |x4(R)|p)2 ≤ 1.

But this is clear, since if we scale to ensure that the maximum on the bottom is 1,

then all the co-ordinates are integers and since the Ti have integer coefficients, the
top is an integer and therefore has p-adic absolute value ≤ 1.

�

Lemma 72 The infimum in the definition for εp exists and is non-zero.

Proo f : From Lemma 37, we have

0 < ε(2)
p ≤ 1

and from Lemma 65, we have

0 < ε(4)
p ≤ 1.

Since (by considering their definitions) we also have(
ε(4)

p

)4
ε(2)

p ≤ εp ≤ 1,

we can deduce that

0 < εp ≤ 1.

�
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As we have seen in section 3.3, C4 looks like a finite number of components over

Fp, so the above notation allows us to consider the contribution from a single com-
ponent or even from a point.

Definition 73 A component or point X ⊆ C4(Fp) is said to contribute to εp if

εp(Q1,Q2; X) < 1.

The following lemma shows us that we are free to adjust our QI by an SL4(Zp)

or GL2(Zp) transformation before doing calculations. This will mean we can often
deal with the point (1 : 0 : 0 : 0), for example, instead of a more complicated point.

Lemma 74 For a transformation t ∈ SL4(Zp) × GL2(Zp) (whose action on

(Q1,Q2) and X has been defined in section 3.2), we have εp(t(Q1,Q2), t(X)) =
εp(Q1,Q2, X).

Proo f : Let R = (x1 : x2 : x3 : x4) with max |xi|p = 1. If we consider two matrices
M2 ∈ GL2(Zp) and M4 ∈ SL4(Zp) and act by the transformation < M2,M4 > on

the QI, then the effect on the underlying binary quartic is to act by (det M2
4 ,M

T
2 ) =

(1,MT
2 ). Considering first the SL4(Zp) action, let t =< I,M4 >. The equations for

g and g4 do not change (see Lemma 55) and since T1 and T2 are covariants, we
have

εp(t(Q1,Q2); t(X))

= inf
R∈t(X):R∈t(C4)

max(|4g(M4T1(R),M4T2(R))|p, |3g4(M4T1(R), M4T2(R))|p)

= inf
R′∈X:R′∈C4

max(|4g(T1(R′), T2(R′))|p, |3g4(T1(R′),T2(R′))|p)

=εp(Q1,Q2; X),

since we still have max |x′i |p = 1 for R′ = (x′1 : x′2 : x′3 : x′4). For the GL2(Zp)
action, we know that the equations for g and g4 change by the action of M2, but

Lemma 32 from section 2.3 tells us that this does not have an effect on εp. The
point R in the infimum does not change if we act by GL2(Zp), so we can see that

εp remains unchanged.

�

The following lemma shows us there are only three types of component we need

to worry about.
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Lemma 75 If C4 is minimal, then R ∈ C4(Fp) contributes to εp only if

1. R is a non-regular point defined over Fp.

2. R lies on a straight line defined over Fp that is a component in C4.

3. R lies on a plane conic defined over Fp that is a component in C4.

Proo f : Let R = (x1 : x2 : x3 : x4) with max(|xi|p) = 1. For a contribution we
have two cases; we either need p | T1(R) and p | T2(R) or (if we assume

P = (T1(R) : T2(R)) is given by (1 : 0) modulo p, say), then we need some
condition on the coefficients of C4 amounting to p | a and p | b in the coefficients

of g.

If we assume R is a singular point, then we are in the first case and

T1(R) ≡ T2(R) ≡ 0 mod p. We may assume that R = (0 : 0 : 0 : 1), so

Q1 = p(ax1 + bx2 + cx3 + dx4)x4 + f1(x1, x2, x3),

Q2 = αpx2
4 + f2(x1, x2, x3, x4),

where the polynomial f2 has no x2
4 term and a, b, c, d, α ∈ Zp. Now if p - d,

then looking modulo p2, we see that R does not lift to a point on C4(Qp) and can

therefore be ignored. So we only need to consider points where p2 | a44, which is
precisely the definition of R being a non-regular point.

If instead R is a smooth point, then it lifts to a Qp point (by Hensel’s Lemma)

and we can then use an SL4(Zp) transformation to move R to (0 : 0 : 0 : 1). By
suitable SL4(Zp) and GL2(Zp) transformations we can eliminate a24, a34, b14 and

b34, say (this is effectively moving the tangent line at R to {x1 = x2 = 0}). Then
by scaling each equation (effectively another GL2(Zp) transformation), we may

assume our QI is given by Q1 = x1x4+ f1(x1, x2, x3) and Q2 = x2x4+ f2(x1, x2, x3).
A calculation shows that the coefficients of x2

4 in T 1 and T 2 are a2
14b2

24b33 and

a2
14b2

24a33 respectively, i.e. b33 and a33. If we are in the first case where p | T1(R)
and p | T2(R), this means a33 ≡ b33 ≡ 0 mod p. In other words25, we have the

25Note that the argument thus far has been similar to that in the proof of Lemma 57.
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matrices

V1 =


2a11 a12 a13 1

a12 2a22 a23 0
a13 a23 0 0

1 0 0 0

 , V2 =


2b11 b12 b13 0

b12 2b22 b23 1
b13 b23 0 0

0 1 0 0


and {x1 = x2 = 0} is a line on the reduction C4.

Now if instead we are in the second case, by considering when p | T2(R),

p - T1(R) and again conducting suitable GL2(Zp) and SL4(Zp) transformations,
we may assume that Q1 and Q2 are represented modulo p by the following

matrices:

V1 =


2a11 a12 a13 1

a12 2a22 a23 0

a13 a23 2a33 0
1 0 0 0

 , V2 =


2b11 b12 b13 0

b12 2b22 b23 1

b13 b23 2b33 0
0 1 0 0

 ,

where p | a33, but p - b33. Now, recalling what it meant for the point (1 : 0) to

contribute in the n = 2 case, some calculation shows:

g(x, z) = det(V1x + V2z) = ax4 + bx3z + cx2z2 + dxz3 + ez4,

p | a = 4a22a33 − a2
23 ⇒ p | a23,

p | b = 4a12a33 − 2a13a23 − 4a22b33 + 2a23b23 − 4a33b22,

⇒ p | 4a22b33 ⇒ p | a22,

since we are assuming p > 3. In other words we have the following matrices:

V1 =


2a11 a12 a13 1

a12 0 0 0
a13 0 0 0

1 0 0 0

 , V2 =


2b11 b12 b13 0

b12 2b22 b23 1
b13 b23 2b33 0

0 1 0 0


and R lies on the hyperplane {x1 = 0} and the conic given by b22x2

2 + b23x2x3 +

x2x4 + b33x2
3 = 0.

�
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We remark here that if the reduction contains a non-degenerate conic, then we

treat this as item 3 in the statement of the lemma, but if we have a degenerate
conic, we are free to treat it as item 2 or item 3.

Now we will define three operations which will help us deal with the types

of components coming out of the above lemma. As usual, C4 will have integral
equations Q1(x1, x2, x3, x4) = Q2(x1, x2, x3, x4) = 0.

1. First let L ⊂ C4 be a smooth line defined over Fp, then

Φ : (Q1,Q2, L) 7→ (Q3,Q4),

where (Q3,Q4) is formed from (Q1,Q2) by applying the transformation

<

 1
p 0

0 1
p

 ,D1M1 > .

Here M1 ∈ SL4(Zp) is the transformation which moves the line L to {x3 =

x4 = 0} and

D1 =


1 0 0 0

0 1 0 0
0 0 p 0

0 0 0 p

 .
Notice that the image always contains the line {x1 = x2 = 0} and applying Φ

to this is the inverse operation and returns us to the original QI.

2. Then for P ∈ C4(Fp) a non-regular point,

χ : (Q1,Q2, P) 7→ (Q3,Q4),

where (Q3,Q4) is formed using

<

 1
p2 0

0 1
p

 S 2,D2M2 > .

Here M2 ∈ SL4(Zp) is the transformation which moves P to (0 : 0 : 0 : 1),

S 2 ∈ SL2(Zp) is the transformation which ensures we have p | a14, a24, a34
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and

D2 =


p 0 0 0
0 p 0 0

0 0 p 0
0 0 0 1

 .

3. Note that we can now also define another operation which behaves like the

inverse of χ, for C ⊂ C4 a conic defined over Fp. We write

χ−1 : (Q1,Q2,C) 7→ (Q3,Q4),

for (Q3,Q4) formed using

<

 1
p 0

0 1

 S 3,D3M3 > .

Here M3 ∈ SL4(Zp) is the transformation which moves the conic into the
plane {x1 = 0}, S 3 ∈ SL2(Zp) is the transformation which ensures we have

p | b22, b23, b24, b33, b34 and

D3 =


p 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

 .

Note that we can choose to operate on a degenerate conic using either Φ (in one of

two ways) or χ−1.

These operations also all preserve minimality. We will refer back to the
definitions frequently in the following sections.

Lemma 76 The operation Φ is well defined up to Zp-equivalence, i.e. if (Q1,Q2)
and (Q3,Q4) are Zp-equivalent QIs (and this Zp transformation modulo p identifies

the lines L1 and L2 on the respective reductions of the QIs), then Φ(Q1,Q2, L1) and

Φ(Q3,Q4, L2) are also Zp-equivalent.

Proo f : Firstly, since the same GL4(Zp) transformation is used to move the lines

L1 and L2, we may assume L1 = L2 = {x3 = x4 = 0}. Let (V1,V2) and (V3,V4) be
the respective matrix representations for the Zp-equivalent QIs. We have that for
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some matrix M ∈ GL4(Zp),

V1 = MT V3M, V2 = MT V4M.

So, by replacing (V1,V2) by the transformed QI given by (V ′1,V
′
2) and similarly for

(V3,V4), we get

(D−1
1 )T V ′1D−1

1 = MT (D−1
1 )T V ′3D−1

1 M, (D−1
1 )T V ′2D−1

1 = MT (D−1
1 )T V ′4D−1

1 M,

i.e.

V ′1 = (D−1
1 MD1)T V ′3(D−1

1 MD1), V ′2 = (D−1
2 MD1)T V ′4(D−1

1 MD1).

Now, the matrix M preserves the line {x3 = x4 = 0}, i.e. we can view this as a
matrix which preserves D1(Z4

p). Thus M has the form26

M = D1M′D−1
1 ,

for some M′ ∈ GL4(Zp). So we have

V ′1 = (M′)T V ′3M′ and V ′2 = (M′)T V ′4M′,

which is the required result.

�

We can perform similar proofs to show that the operations χ and χ−1 are also well
defined up to Zp-equivalence.

Lemma 77 1. The operationΦ leaves the underlying binary quartic g(x, z) un-

changed.

2. The operations χ and χ−1 ‘flip’ g(x, z) in the sense of Definition 44 (up to an

SL2 transformation).

Proo f : Recall Lemma 55 from section 3.2, which gives the rule for how the
underlying binary quartic changes for a given transformation < A, B > on the QI.

This is by < det(B), AT >, recalling that the action of the first argument is by
multiplication by det(B)2. Since M1,M2 and M3 in the definitions of the maps

26This is a special case of Lemma 4.1 in [CFS09].
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have determinant 1, we may assume that L = {x3 = x4 = 0}, that P = (0 : 0 : 0 : 1)

and that the conic C is in the plane {x1 = 0}. S 2 and S 3 (in the definitions of the
maps) act as a translation on the binary quartic, so we only need to consider the

actions of the diagonal matrices. The effect on g4 is the same as that on g, since it
is a covariant.

For Φ, the transformation on the binary quartic is < p2,

 1
p 0

0 1
p

 >, so

g(x, z) changes to p4g( 1
p x, 1

p z) = g(x, z). For χ we have < p3,

 1
p2 0

0 1
p

 > and we

get p6g( 1
p2 x, 1

p z) = p2g( 1
p x, z), i.e. the ‘flip’ of g(x, z), which is also what we get

from the transformation < p,

 1
p 0

0 1

 > for χ−1.

�

Now we are ready to put together the following theorem.

Theorem 78 For a QI given by C4 = (Q1,Q2),

1. Let C′4 = Φ(Q1,Q2, L) for L ⊂ C4 a line defined over Fp. Then we have

εp(Q1,Q2; L) = p−4εp(C′4; C
′
4(Fp) \ L′), for L′ a line defined over Fp de-

pending on L.

2. Let C′′4 = χ(Q1,Q2, P), for P ∈ C4(Fp) a non-regular point. Then we have

εp(Q1,Q2; P) = p−6εp(C′′4 ; C
′′
4 (Fp) \C), for C a (possibly degenerate) conic

defined over Fp depending on P.

3. Let C′′′4 = χ
−1(Q1,Q2,C), for C ⊂ C4 a (possibly degenerate) conic defined

over Fp. Then we have εp(Q1,Q2; C) = p−2εp(C′′′4 ; C
′′′
4 (Fp) \ P), for P a

non-regular point depending on C.

Proo f : Firstly, since we know that the actions of SL2(Zp) and SL4(Zp) do not affect

εp, we only need to consider the diagonal transformation. Let R = (x1 : x2 : x3 : x4)
be a generic point. Now recall that for a 4 × 4 matrix M, we have

Ti(R, {a(M)
j }) = det(M)2Ti(M(R), {a j}),

for the a j running through the coefficients of Q1 and Q2 and the a(M)
j running

through the coefficients after the application of the matrix M. So now, for the
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matrix D1 from the definition of Φ, we have

Ti(R, {a(D1)
j }) = det(D1)2Ti(D1(R), {a j}) = p4Ti(D1(R), {a j}).

Therefore, for a point on the line {x1 = x2 = 0}, we can take a factor of p from

each co-ordinate of R and (because the Ti are quadratic) we get

Ti(R, {a(D1)
j }) = p6Ti(R′, {a j}),

for some R′ = (x′1 : x′2 : x′3 : x′4) with entries in Zp such that max |x′i |p = 1 (since

we are in projective co-ordinates and therefore x3 and x4 are not both 0). Now we
have to divide each of the Qi through by p, which has the effect of dividing the Ti

by p5. So under application of Φ,

g(T1(R), T2(R)) 7−→ g(pT1(R′), pT2(R′)),

g4(T1(R), T2(R)) 7−→ g4(pT1(R′), pT2(R′))

and so

γp(R) 7−→ p−4γp(R′),

δp(R) 7−→ p−4δp(R′),

for R such that R ∈ L = {x1 = x2 = 0} and some R′ such that R
′ ∈ C

′
4 \ L′ =

C
′
4 \ {x3 = x4 = 0}. If we let R = (0 : 0 : 0 : 1), then R′ = (∗ : ∗ : 0 : 1). By applying

the same calculation to L′, we obtain the equality

εp(Q1,Q2; L) = p−4εp(C′4; C
′
4(Fp) \ L′).

For χ it is slightly more complicated, because T1 and T2 behave differently. We

use the matrix D2 from the definition of χ and then consider a point R such that
x4(R) . 0. In a similar way to the above, after dividing both quartics by p, we

obtain

Ti(R, {a(D2)
j /p}) = pTi(R′, {a j}),

for some R′ = (x′1 : x′2 : x′3 : x′4) with coefficients in Zp such that |x′4|p = 1. Then,
dividing Q1 by a further p has the effect of dividing T1 by p2 and T2 by p3. When

putting these into the p2g(x/p, z) obtained in the previous lemma, γp(R) becomes
p6γp(R′) and δp(R) becomes p6δp(R′) for R such that R ∈ C

′′
4 (Fp) \ C and R′ such
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that R
′
= (0 : 0 : 0 : 1).

Finally, for χ−1 we use D3 and consider R such that R . (1 : 0 : 0 : 0). This

gives T1(R′, {a j}) and 1
p T2(R′, {a j}), meaning γp(R) becomes p2γp(R′) and δp(R)

becomes p2δp(R′) for R′ a point such that x4(R′) = 0. Putting this all together

gives us the two equalities

εp(Q1,Q2; P) =p−6εp(C′′4 ; C
′′
4 (Fp) \C),

εp(Q1,Q2; C) =p−2εp(C′′′4 ; C
′′′
4 (Fp) \ P),

as required.

�

Note that in the statement of the lemma, L′, C and P, respectively are the

components we would have to operate on to take us back to the original QI. Also,
note that we can always read off the contribution to εp as 2| det M|p, for M the GL4

transformation in the relevant operation. This will be made more precise later on.

This now gives us the machinery to calculate εp for p > 3. On a given QI,
we can find all the singular points, lines and conics. Then we can apply the

relevant operation, add a multiple of log(p) to εp and investigate the new QI
(ignoring the relevant component or point which would send us back). We know

there is only a finite number of Zp-equivalence classes of QIs, so as long as we
can tell when we reach a QI that we have considered before, we will be able to

calculate the maximum contribution from all points on the original QI. Hence we
can compute εp. However, before discussing an algorithm in detail, we need to see

what happens at p = 2 and 3.

3.5.2 The Awkward Primes 2 and 3

Let us generalise to the remaining finite places, recalling that we need to use dif-
ferent formulae for the 2-covering map. Hence, for R ∈ C4(Qp) and p = 2 or 3,

define

γp(R) =|4G(T1(R), T2(R))|p,
δp(R) =|G̃(T1(R),T2(R))|p,
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where we recall G and G̃ from section 2.2.1.

G(x, z) =
1
4

(α0x2 + α1xz + α2z2)2 + a2x4 + b2x3z + c2x2z2 + d2xz3 + e2z4,

G̃(x, z) =(b2
2 − 4a2c2 − α2

0c2 + α0α1b2 − α2
1a2)x4+

(−8a2d2 − 2α2
0d2 − 2α0α2b2 − 4α1α2a2)x3z+

(−16a2e2 − 2b2d2 − 4α2
0e2 − α0α1d2 + 2α0α2c2 − α1α2b2 − 4α2

2a2)x2z2+

(−8b2e2 − 2α2
2b2 − 2α0α2d2 − 4α0α1e2)xz3+

(d2
2 − 4c2e2 − α2

2c + α1α2d2 − α2
1e2)z4.

Here a2, b2, c2, d2, e2, α0, α1 and α2 now have expressions in terms of the coeffi-
cients of (Q1,Q2) and are integers. We calculate them following ideas of [CFS09]

and modifying equation (10). The expressions for the first five are complicated, but
the cross terms are quite manageable:

α0 =a12a34 + a13a24 + a14a23,

α1 =a12b34 + a13b24 + a14b23 + b12a34 + b13a24 + b14a23,

α2 =b12b34 + b13b24 + b14b23.

Remember at p = 2 we have to be careful not to work with the matrix notation,
since that is not well defined over F2 (it is safe over Q2 for the above calculation

though), but many of the lemmas in the previous section do still hold.

Lemma 79 The expressions within γp and δp are covariants for diagonal matrices.

Proo f : Recall the definition of a covariant (Definition 53). The easiest way to see

this is by invoking MAGMA to ease some of the calculations. Let ∆i be the four
diagonal matrices with a in the i’th diagonal entry and 1’s elsewhere.

We know that T1 and T2 are covariants of (Q1,Q2), so without loss of gen-

erality, we will work with Q1 and Q2 in our expressions for γ2 and δ2. Since
G(x, z) = det(V1x + V2z) and we are effectively multiplying one row and column

by a, we have (det M)2G(x, z) = det(MV1x + MV2z) for M one of the matrices
above. This is allowed at p = 2, since the determinant has a precise polynomial

expression and we never actually have to pass to matrix notation.
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It remains to check G̃. For this we use MAGMA to do the calculations for all the

∆i and we get that G̃ is a covariant of weight 4.

�

A calculation shows that the relation also holds for swapping two co-ordinates and

we can say something about general SL4(Zp) transformations too. That is for one
of the basis matrices for SL4(Z2), e.g.

1 1 0 0
0 1 0 0

0 0 1 0
0 0 0 1

 ,

we get that the cross-terms (i.e. the αi) after this transformation27 are given by

α0 =a12a34 + a13a24 + a14a23 + 2a22a34 + 2a23a24,

α1 =a12b34 + a13b24 + a14b23 + 2a22b34 + a23b14 + 2a23b24 + a24b13 + 2a24b23+

a34b12 + 2a34b22,

α2 =b12b34 + b13b24 + b14b23 + 2b22b34 + 2b23b24.

These are the same as the original αi modulo 2. Thus the action of SL4(Zp) only

affects the underlying generalised binary quartic by a y-substitution.

Lemma 80 For p = 2 or 3, εp(C4) is unaffected by Zp-transformations; i.e. for

t =< S ,M >, with S ∈ GL2(Zp) and M ∈ SL4(Zp), we have

εp(t(C4)) = εp(C4).

Proo f : From Lemma 55 and the calculations above, t affects C2 using the trans-

formation t1 =< 1, [β0, β1, β2], S T >, for some βi ∈ Zp. Therefore, since the Ti in
the expressions for γp and δp are covariants, we just need to check that t1 does not

affect εp(C2), but this is a consequence of Lemma 32.

�

27We only use matrix notation here for convenience.
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Lemma 81 Lemma 75 holds for p = 2 and p = 3.

Proo f : Tackling p = 3 first, if we have 3 | T1 and 3 | T2, then the iden-

tical argument still implies that we either have a line or a non-regular singular
point. If instead we are considering P = (1 : 0), then we need 3 to divide the

first coefficient of the expressions in γ3 and δ3. Recall that we are assuming
3 | a24, a33, a34, b14, b34, b44, 3 - b33 and a14 ≡ b24 ≡ 1 mod 3, i.e.

Q1 =a11x2
1 + a12x1x2 + a13x1x3 + x1x4 + a22x2

2 + a23x2x3,

Q1 =b11x2
1 + b12x1x2 + b13x1x3 + b22x2

2 + b23x2x3 + x2x4 + b33x2
3.

The expression for the first term of 4G is

16a11a22a33a44 − 4a11a22a2
34 − 4a11a2

23a44 + 4a11a23a24a34−
4a11a2

24a33 − 4a2
12a33a44 + a2

12a2
34 + 4a12a13a23a44−

2a12a13a24a34 − 2a12a14a23a34 + 4a12a14a24a33 − 4a2
13a22a44+

a2
13a2

24 + 4a13a14a22a34 − 2a13a14a23a24 − 4a2
14a22a33 + a2

14a2
23,

so for 3 to divide this, we need 3 | a23. The expression for the first coefficient of G̃

is even less inviting, but it reduces to

−2a13a14a23b24 − 4a2
14a22b33 + 2a2

14a23b23.

For 3 to divide this then means that 3 | a22, which means we have a conic as before.

For p = 2, again if we have 2 | T1(R) and 2 | T2(R), then (so long as we

bypass any matrix notation by thinking about the equations for the quadric) we

still get a line or a non-regular singular point. Otherwise we will need 2 | α0

and 2 to divide the first coefficient of G̃ from the expression for δ2. Since we are

again assuming 2 | a24, a33, a34, b14, b34, b44 and that a14, b24, b33 are odd, from the
expression for α0 we must also have 2 | a23. We also have 2 dividing

((α2
0α

2
2)/4 + 3b2

2 + 3b2α0α1 − 8a2c2 − 2α2
0c2 − 2α2

1a2 − 4α0α2a2 − α3
0α2

− (a2 + α
2
0/4)(4c2 − 4α0α2 + α

2
1)),

which means 2 | (b2
2 − α2

1a2). Since we now have 2 | a23, a calculation shows we
must have 2 | a2, therefore we need 2 | b2, from above. Another calculation shows
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that this implies 2 | a22 similarly. So we also still have a conic and the lemma is

proved.

�

Lemma 82 For p = 2 and 3,

1. Φ leaves γp and δp unchanged.

2. χ and χ−1 ‘flip’ the equations in γp and δp.

Proo f : This is identical to the proof of Lemma 77.

�

We can check that εp > 0 and the proof of Theorem 78 also follows through in the

same way, since we only need to use the equations for T1 and T2 and know that the
maps Φ and χ affect the coefficients of γp and δp for p = 2, 3 in the same way as

a, b, c, d and e. Thus for the awkward primes there are no real difficulties beyond
those encountered in the n = 2 case.

3.6 Implementation

The following result will be useful when we describe an algorithm for computing
εp using the graph of equivalence classes.

Lemma 83 The contribution to εp from a particular Zp-equivalence class can be

read off as −2| det M|p, for M the GL4 part of the transformation between the initial

vertex and the vertex in question.

Proo f : From Theorem 78, we can see that the determinant gives the required
value for a single transformation, so we only need to be careful to remove common

factors from M (which will not affect C4(Qp)) when we put several operations
together to account for the possibility of going round in circles in the graph.

�

The routine we shall discuss will work on any reduction type, but it is useful to
have the graph of In in mind (which will be discussed in section 4.1.1), since that

is in some ways the most complicated case we will have to consider.

To calculate the bound given in section 3.5, we need three routines. One
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for εp at the finite primes, one for ε(4)
∞ and one for ε(2)

∞ . The latter two have already

been discussed, so we will now look at the first.

The input will be p > 2 and F, a QI. The algorithm has been implemented
for p > 2 and the method can be adapted for p = 2, but the changes are at every

stage (since we use matrix notation) so would effectively be a parallel program.
We will be careful in the next section to use examples where 2 is not a prime of

bad reduction.

Let Q1 and Q2 be the equations for F and V1 and V2 be the matrix forms
of these over Fp. We also start with a list of the vertices (Zp-equivalence classes)

that we have considered so far; call this list KK. Each element of the list contains

the GL2 and SL2 transformations used to get there (from F), the equations of the
QI and the last conic, line or (non-regular) point considered to get there. So KK

starts off as {(I,Q1,Q2,−)}.

Now, given V1 and V2, we have three functions to find the conics, lines
and singular points at this equivalence class.

• FindSP simply calculates the singular sub-scheme of the curve formed from

Q1 and Q2 over Fp and lists the points there.

• FindLines calls MAGMA’s ‘PrimaryDecomposition’ function on the ideal
generated by Q1 and Q2 over Fp. This returns the smooth components of

the ideal and then we determine which of these have degree 1.

• FindConics does similarly, returning the degree 2 components, but we also

have to consider the ‘degenerate conics’ - those formed by any two co-planar
lines. We calculate the equations for these by taking the equations for two

lines and finding the intersection of the vector spaces.

Once we have found these singular points, lines and conics, we temporarily move
them to somewhere convenient and then have functions to determine whether they

need to be considered.

• MoveSP will move the singular point to (1 : 0 : 0 : 0) by calculating the Smith
Normal Form (SNF) of the 1 × 4 matrix for the point. The transformation

matrix to get it in SNF is what we want. We also use the GL2 action to ensure
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the output is two matrices of the form
0 0 0 0

0
0 ∗
0

 ,


0

∗

 .

It also outputs the global transformation used to get there.

• MoveLine uses SNF in the same way to change the 2 × 4 matrix for the line

into

 1 0 0 0
0 1 0 0

, returning


∗

0 0
0 0

 ,

∗

0 0
0 0

 .

• MoveConic is essentially the same, but we must first ensure that the QI is in
the form x4 = f (x1, x2, x3) = 0 and then find a point on the conic f . Once

we have this, we use the same SNF trick to move this point to (1 : 0 : 0 : 0),
returning 

0 0 0
0 0 0

0 0 0
∗

 ,


0

∗

 .

Now we need to see whether this point, line or conic needs to be considered. For

lines and conics, this just involves checking whether the relevant ‘flip’ lands us in
an element of KK that we have already considered. For singular points, we also

need to check that it is a non-regular point, i.e. that p2 | a11. To see whether a
new QI is in the list already, we take the SL4 transformation, T say, used to get

there and calculate Mi = TT−1
i for Ti each of the transformations in KK. The

SNF of Mi will then tell us whether we are in that ith equivalence class, since
if its top left entry is divisible by p, then Mi contains a factor of pI, i.e. χχ−1

orΦΦ−1. If this is the case, then we could have got to this vertex via a shorter route.

We discard those which fail this test and carry out the relevant operation on
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the others and add them to KK, keeping track of the transformation, which now

includes one of

<

 1
p2 0

0 1
p

 ,


1
p

p

p

 >, <

 1
p 0

0 1
p

 ,


p

p

1
1

 >

or <

 1
p 0

0 1

 ,


1

1
1

p

 > .

We move through this list of QIs until no new Zp-equivalence classes are found,

keeping track of the contribution to εp at each step. At the end, we look at
contributions at all the vertices stored in KK and find the maximum, which is

returned as εp for F.

Clearly this routine can also be used to generate a list of all the vertices in
the graph as a list of their transformations from the starting vertex. We could pick

out only those vertices where a component is seen with multiplicity at least 3.
These (as a set) are the best on which to search for points, since a given Qp-point

will be smooth on at least one of them. They are also the only ones that we need
to consider for the bound (see Lemma 100). There are cp of these equivalence

classes, for cp the Tamagawa number at p. It is then possible to meld28 each of
these transformations at every bad prime to get

∏
p cp global models on which to

search.

We must also note that the above algorithm terminates, since there are only
a finite number of equivalence classes.

3.7 Examples

How good are the bounds we are producing? Are there points on the elliptic curve
which come close to achieving the bounds, which would show that they are in

some sense ‘best possible’?

28I.e. if we have Tp a transformation modulo p and Tq a transformation modulo q, we can find a
transformation T which is congruent to Tp and Tq respectively modulo p and q.

94



Consider the elliptic curve given by ‘897f2’ in [Cre97] and its reduced 4-covering
given by

C4 : x1x4 − x2x3 = x2
1 + x1x3 + x1x4 + x2

2 + x2x4 − 2x2
3 − x3x4 − 5x2

4 = 0.

This has reduction type I4 at 3, I1 at 13 and I2 at 23. The bound for

h(R) − h(π(ϕ(R)))/8 comes out as 4.0268..., but the point on C4 which maps
to 73(−5: 1 : 1) on E gives a value of 3.2209..., which is close to achieving the

bound. This sort of proximity is often found in Zp-equivalence classes where the
component on which the point lies cannot be seen as a smooth component in the

reduction and where it would take many operations of χ and Φ before it can be
seen as a smooth component.

Another question to answer is that of what makes up the major contribu-

tions to the bound. We will see in section 4.1.2 that the contributions at the finite
places (certainly for multiplicative reductions) vary quite dramatically depending

on the equivalence class in which we start. For reduction type I2 for example,
there could be three equivalence classes, two of which have εp = p−8 and one of

which has εp = p−2. We will investigate this further in the next section.

For now, we can say that in general (if we ensure the coverings are reduced),
the contribution at the finite primes dominates that at ∞. Consider the curve

given by ‘777d2’ in [Cre97]. In the following table, we list the contributions (to
3 significant figures) at the finite places compared to those at ∞. There are two

equivalence classes at p = 3 and three at p = 7 and p = 37, so eighteen in all. This
means that there end up being four possible values at the finite places and for each

value, we list the various computations at ∞. Numbers in brackets give how many
of the eighteen equivalence classes give each particular value.

∑
p<∞ log(εp)/8 log(ε(2)

∞ )/8 log(ε(4)
∞ )/2.

6.11 (8) -0.195 -0.155, -0.264, 0.309 (2), 0.317 (2), -0.512 (2).
4.65 (4) -0.195 0, 0.399, 0.236, 0.108.

3.40 (4) -0.492 0.110, 0.154 (2), 0.185.
1.94 (2) -0.0266 0.485, 0.445.

As we can see, the contribution at ∞ is fairly negligible, so it is more im-
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portant to improve the value at the finite primes. We will now see how the

contributions there can vary depending on the graph of equivalence classes.

To see that the bounds we obtain are better than those achieved using the
theory of resultants, take the example at the end of section 2.8;

E2 : y2 + xy = x3 + x2 − 2x + 1.

This has a single 4-covering that is everywhere locally soluble, given in reduced

form by
x1x4 + x2x3 = x1x2 − x1x4 − 2x2x4 + x2

3 + x3x4 − x2
4.

Using our methods, we get no contributions from the finite primes, therefore our

bound is just from the infinite place and comes out as 0.5480... Using the resultant
method found in section 3.5, we find that there are polynomials fi such that

( f1Q1 + f2Q2 + f3T1 + f4T2)(x1, x2, x3, x4) = 133x5
i ,

for each i. This then leads to a bound of 3.8523...
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4 Deeper Investigations for Curves with Multiplicative
Reduction

4.1 Graphs of Equivalence Classes

When considering all the Zp-equivalence classes of quadric intersections, it is use-

ful to have a picture in mind. Here I will discuss how one can generate such a
picture for reduction type In, first with a naive example and then in a general set-

ting. In principal, the ideas could be used on other reduction types, although there
is less need when there are fewer smooth components. For a naive example, let us

consider the QI given over Q by

Q1 = 2x1x3 + 6x1x4 + x2
2 − 2x2x4 − 2x2

3 + 3x2
4,

Q2 = 2x1x2 + 2x1x4 + 2x2x4 + x2
3 − 3x2

4.

This has Kodaira symbol I3 at p = 5. It can be shown that the QI above contains

two lines and a conic over Fp:

L1 : x1 + 2x3 + x4 = x2 + x3 + x4 = 0,

L2 : x1 + x3 + x4 = x2 + 2x3 + x4 = 0,

Γ : x2 + 2x3 + 2x4 = x1x3 + 3x1x4 + x2
3 + x3x4 + 3x2

4 = 0.

It also contains a degenerate conic (in the plane formed from the two lines), given
by

Γ12 : x1 + x2 + 3x3 + 2x4 = x2
2 + 3x2x3 + 2x2x4 + 2x2

3 + 3x3x4 + x2
4 = 0.

There are singular points at

(1 : 0 : 4 : 1), (4 : 4 : 0 : 1), (4 : 3 : 1 : 0),

but we can check that these are all regular. If we apply χ−1(Q1,Q2, Γ), i.e. we use
the following transformation:

<

 1
5

3
5

0 1

 ,


1 −10 4 1
0 −2 1 0

1 −4 2 0
0 −5 0 0

 >,
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then we arrive in a new equivalence class with equations

Q3 =6x2
1 + 6x1x2 + 4x1x3 + 10x1x4 + 2x2

2 + 2x2x3 + 4x2x4 + 2x3x4 + 5x2
4,

Q4 = − 25x2
1 − 18x1x3 − 20x1x4 + 2x2

2 − 4x2
3 − 10x3x4.

This has no lines or conics and only a singular point at (0 : 0 : 0 : 1) (which would

return us to the first equivalence class), so we must be seeing one component four
times.

If instead we ‘flipped’ one of the lines using either

<

 1
5 0
0 1

5

 ,


5 0 0 0

0 5 0 0
−1 0 1 −1

−1 −1 0 1

 >
or

<

 1
5 0

0 1
5

 ,


5 0 0 0
0 5 0 0

0 −1 1 −1
−1 −1 0 1

 >,
then we would arrive in a new equivalence class containing a line and a component
of degree 3. Call the QIs we obtain (Q5,Q6) and (Q7,Q8) respectively. Each line

would take us back to the original QI, but each of these two equivalence classes
also has a non-regular point which we could blow up. So our graph of four vertices

still has three loose ends (namely Γ12 on the original QI and a non-regular point on
each of (Q5,Q6) and (Q7,Q8)), so thus far we have the following picture:

(Q5,Q6)oo

KKKKKKKKKK

// (Q1,Q2) (Q3,Q4)oo

(Q7,Q8)oo

ssssssssss
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where the lines are applications of Φ and the arrows χ. Applying χ−1(Q1,Q2, Γ),

using

<

 1
5

3
5

0 1

 ,


12 1 1 2

−3 0 0 −1
5 0 1 1

5 0 0 0

 >,
brings us to a QI with equations (Q9,Q10) containing two conics and a non-regular

point (which would take us back). By some computation of the matrices, it can
be shown that this is also what we get (up to Zp-equivalence) after applying χ

to singular points which represented the other two loose ends. So we have the

following graph:

(Q5,Q6)

yyrrrrrrrrrr

KKKKKKKKKK

(Q9,Q10) // (Q1,Q2) (Q3,Q4)oo

(Q7,Q8)

eeLLLLLLLLLL

ssssssssss

Again the lines are applications of Φ and the arrows χ. Recalling that an edge

representing Φ has weight 4, χ weight 6 and χ−1 weight 2, we can read off that
the maximum of the distances from (Q1,Q2) to any other vertex is 4. Therefore,

ε5(Q1,Q2) = 5−4.

4.1.1 A Power Series Point of View

The goal of this section is to try to understand how many components of the special
fibre are ‘contained’ in a singular point P (i.e. the components which, after blowing

up, are found above P) and then how the transformations Φ and χ affect this. To do
this, let us consider what happens at a singular point when we carry out one of the

operationsΦ or χ, so let us start with the ideal generated by the QI with coefficients
in Zp (which we will consider in affine co-ordinates by setting x4 = 1, say) in the

power series ring Zp[[x1, x2, x3]],

I = (Q1(x1, x2, x3),Q2(x1, x2, x3)) ⊂id Zp[[x1, x2, x3]].
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Since we have multiplicative reduction, the reduction of the QI modulo p has a

node, i.e. a singular point with two distinct tangent directions (see [Har77] p.37
or [EH00] p 57). Now if we move the node to the origin and take the completion

of the co-ordinate ring, we get a ring isomorphic to

Fp[[x1, x2, x3]]
(x1x2, x3)

.

In other words, we can make a substitution so that I is such that

I = { f : f ∈ I} = (x1x2, x3),

with {x1 = x3 = 0} and {x2 = x3 = 0} being the two distinct tangents. Throughout

this section, we will write w′ for w/p for w ∈ Zp. Now let us utilise the following
lemma from the theory of arithmetic geometry.

Lemma 84 Let I be an ideal in S = Zp[[x1, x2, ..., xm]] and let the maximal ideal

m of S/I be given by m = (p,w, z) for elements w, z ∈ S/I such that wz ∈ pS/I.

Then

1. There exists α ∈ pZp and a surjective homomorphism

ψ : Zp[[u, v]]/(uv − α)→ S/I,

such that ψ(u) − w, ψ(v) − z ∈ pS/I.

2. If

Fp[[x1, x2, ..., xm]]/I � Fp[[x, y]]/(xy),

then any ψ in (1) is an isomorphism.

Proo f : This is proved on p512 of [Liu02] with A = Zp, mA = pZp, B = S/I,
mB = m and noting that the completion of Zp is still Zp and that S/I is Noetherian.

The main idea in the proof is showing that there exist sequences (wn)n≥0, (zn)n≥0

and (cn)n≥0 with w0 = w, z0 = z, wn, zn ∈ m and cn ∈ pZp such that wn+1 − wn ∈
pn+1S/I, zn+1 − zn ∈ pn+1S/I, cn+1 − cn ∈ pn+1Zp and wnzn − cn ∈ pn+1S/I. We
also need S/I to be flat over Zp, which is a consequence of Corollary 2.14 on p11

of [Liu02] and the fact that we can inject Zp into S/I.

�

We then use this in the following theorem, keeping in mind that we will be using I

generated by the QI.
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Corollary 85 For S as above, suppose we have the ideal I of S such that

I = { f : f ∈ I} = (x1x2, x3),

then for some k we have

S/I � Zp[[u, v]]/(uv − pk).

Proo f : If we apply the above lemma using w = x1, z = x2, so that wz ≡ 0 modulo
(p, I), then the hypothesis of the second part of the lemma holds and

ψ : Zp[[u, v]]/(uv − α)→ S/I

is an isomorphism for some α ∈ pZp. We have α , 0 (since otherwise C4 would
be singular), so after multiplication by a unit, we may assume it is pk for some k.

�

Definition 86 Let P be a singular point defined over Fp. We define the thickness

τ(P) by first moving P to the origin and taking the completion of the co-ordinate

ring there. Then τ(P) is defined as k in Zp[[u, v]]/(uv − pk) realised in the isomor-

phism in the above corollary.

We say τ(P) = 0 if P is a smooth point. We should also remark that τ(P) is equal
to the number of components found above P (in the special fibre of the minimal

desingularisation of C4) plus one, which has the following two consequences:

P is a singular point ⇔ τ(P) ≥ 1,

P is a regular singular point ⇔ τ(P) = 1.

This will prove a very useful tool in describing the graph of equivalence classes
below. Note that we believe it is always possible to find a Qp-equivalent QI such

that τ(P) = vp(a11) by continually applying χ to the point P (which includes the
intermediary transformations to get the point to (1 : 0 : 0 : 0)) and then reversing the

process (which does not include the intermediary transformations). In principle,
this could give another way of defining the thickness, but we will continue with the

power series approach here.

Definition 87 The elliptic curve E is said to have multiplicative reduction at p if

p | ∆(E), but p - I, J, for I and J the invariants given in section 2.2.
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The following lemma is partly an illustration to show how we can calculate the sin-

gular points. We will usually assume that they are at (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0).
It also shows that there are precisely two singular points on any given line in the

reduction of C4 so long as we have multiplicative reduction, in agreement with the
classification mentioned in section 3.3.

Lemma 88 If we have a singular point P1 = (1 : 0 : 0 : 0) lying on the line {x3 =

x4 = 0} in the reduction of C4 over Fp and C4 has multiplicative reduction at p,

then there is another singular point at P2 = (k : 1 : 0 : 0), for k = a24b23−a23b24
b14a23−a24b13

.

Proo f : The singular points are those where rank(J) ≤ 1, for J = (∂Qi
∂x j

)
. In our

situation, with coefficients in Fp, we have a11 = a12 = a22 = b11 = b12 = b22 = 0

and x3 = x4 = 0, so

J ≡
 0 0 a13x1 + a23x2 a14x1 + a24x2

0 0 b13x1 + b23x2 b14x1 + b24x2

 .
This has rank ≤ 1 if and only if

(a13x1 + a23x2)(b14x1 + b24x2) = (a14x1 + a24x2)(b13x1 + b23x2),

in other words, the singular points are (x1 : x2 : 0 : 0), for (x1, x2) a solution to the

following quadratic form:

q(s, t) = (a13b14 − a14b13)s2 + (a13b24 + a23b14 − a14b23 − a24b13)st

+ (a23b24 − a24b23)t2 = 0.

Now, the invariant I remains unchanged when we move from the elliptic curve to a
4-covering since C4 is minimal (see [CFS09]). Recalling its equation from section

2.2 in terms of the coefficients of the binary quartic, some computation shows that
I is given by

((a13b24+a23b14−a14b23−a24b13)2 −4(a23b24−a24b23)(a13b14−a14b13))2. (15)

This is the square of the discriminant of the quadratic form q. Since we have
multiplicative reduction at p, we have p | ∆, but p - I, J, so the discriminant of q is

non-zero. This means if we have roots, then they are distinct. One of our singular
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points is P1, so we have a13 = a14 = 0. Therefore the other is a solution to

(a23b14 − a14b23)st + (a23b24 − a24b23)t2 = 0

and P2 has x2 , 0, so set t = 1 and then x1 =
a24b23−a23b24
b14a23−a24b13

as required.

�

For the rest of this section we will assume we have split multiplicative reduction

and then we will see how the non-split case can be read off from this.

As mentioned in section 3.3, if we are in a particular Zp-equivalence class
of QI, then we see up to four components of the special fibre. The components

have multiplicity 1 (since we have multiplicative reduction) and we can see
some of them more than once according to the degree of their equations. Let us

number the components of the minimal proper regular model 1 to n (consecutively
round the polygon of components). Suppose we can see components numbered

a, b, c and d say (in ascending order and possibly including repeats), then we will
write [a, b, c, d] for this Zp-class (up to equivalence of cyclic permutations, i.e.

[a, b, c, d] = [b, c, d, a]). For example, [1, 1, 2, 4] would represent a conic and
two lines. By work of Sadek (see Definition 2.4 in [Sad10b]), if C4 is minimal

at p, then the minimal proper regular model for E is the same as the minimal
desingularisation29 of C4. This means that if our reduction of C4 modulo p already

contains a regular point, then the two components meeting there must be numbered

consecutively. We also know (see [Sad10a]) that the sum s = a + b + c + d is
constant modulo n for a particular Qp-equivalence class of QI, which means we

could write a list of all the potential equivalence classes for a given QI, knowing
only n and s. In fact30, if we know s modulo n and C4 minimal, there is a bijection

between sets:

{[a, b, c, d] : s = a + b + c + d} ↔ {Zp-equivalence classes for C4}.

We will now define a graph, where the vertices are represented by Zp-classes in

the form [a, b, c, d] and the directed edges will be the maps χ and Φ (which change
the Zp-equivalence class of the QI). We will construct the graph by realising χ

29See [Liu02] section 9.3 for definitions of minimal proper regular model and minimal desingu-
larisation.

30This is Theorem 4.2 in [Sad10a].
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and Φ as operations on the bracket [a, b, c, d] in the following theorem, which

transforms the geometric problem into something much more combinatorial.

Theorem 89 1. If ‘a’ represents the line L for a QI given by (Q1,Q2) in the

class [a, b, c, d], i.e. if a , b, d, then we ‘flip’ the line using the operation

Φ : [a, b, c, d] 7−→ [a, b − 1, c, d + 1].

2. If the singular point P between d and a is non-regular, i.e. d , a − 1, then

χ : [a, b, c, d] 7−→ [a − 1, b, c, d + 1].

3. Hence, the inverse of this gives the ‘blow down’ either of a conic C1 (if a = b,

a , c and a , d):

χ−1 : [a, a, c, d] 7−→ [a − 1, a + 1, c, d],

or of a degenerate conic C2 (if a , b, d and b , c):

χ−1 : [a, b, c, d] 7−→ [a − 1, b + 1, c, d].

Before proving this, it is useful to remember what the various maps do to the co-

efficients of (Q1,Q2). Recall that the twenty coefficients are listed with i ≤ j. We
will assume the singular point is at (1 : 0 : 0 : 0), the line is at {x3 = x4 = 0} and the

conic is at x1 = f2(x2, x3, x4) = 0 in the following table:

1
p2

1
p No change p p2

Φ ai j, bi j, j ≤ 2 ai j, bi j, i ≤ 2, j ≥ 3 ai j, bi j, i ≥ 3
χ a11 b11, a1 j, j ≥ 2 ai j, b1i, i ≥ 2 bi j, i ≥ 2

χ−1 bi j, i ≥ 2 ai j, b1i, i ≥ 2 a1 j, j ≥ 2, b11 a11.

To prove the theorem, we need to put together a few lemmas. This one will show

us that the line L is still present after the operation of Φ.
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Lemma 90 Let P1, P2 ∈ C4(Fp) be (distinct) singular points on the line L ⊂ C4,

which is defined over Fp and let C′4 be given by Φ(Q1,Q2, L). Then

Φ : {R ∈ C4(Qp) : R ∈ L \ {P1, P2}} 7→ {R′ ∈ C′4(Qp) : R′ ∈ Γ′ \ {P′1, P′2}},

for singular points P′1, P
′
2 ∈ C4(Fp) on some smooth component Γ′ ⊂ C

′
4 (of degree

1, 2 or 3) defined over Fp. Furthermore, we get an isomorphism ρ : L→ Γ′.

Proo f : If we take L = {x3 = x4 = 0} over Fp, then a general point on the line can

be parametrised by (x1 : x2 : x3 : x4) = (s : t : 0 : 0). Assuming the point is smooth,
then when we lift it to a Qp point, apply Φ and look at the reduction of this modulo

p, we get the point (s : t : ξ1 : ξ2) and

(a′11s2 + 2a′12st + a′22t2) + a13sξ1 + a14sξ2 + a23tξ1 + a24tξ2 =0,

(b′11s2 + 2b′12st + b′22t2) + b13sξ1 + b14sξ2 + b23tξ1 + b24tξ2 =0,

for a′i j =
ai j
p . This is linear in ξ1 and ξ2, so for Fi(s, t) = − 1

p Qi(s, t, 0, 0), we can
derive the following: a13s + a23t a14s + a24t

b13s + b23t b14s + b24t

  ξ1

ξ2

 ≡  F1(s, t)
F2(s, t)

 mod p.

Now, the matrix on the left, M say, has det(M) = q(s, t), for q the quadratic form
in the proof of Lemma 88. This is non-zero apart from at the two distinct singular

points, since we have multiplicative reduction at p. So we can invert the matrix M,
allowing us to define  G1(s, t)

G2(s, t)

 = q(s, t)M−1

 F1(s, t)

F2(s, t)

 .
Substituting in the expressions for ξ1 and ξ2, we see the smooth points on the line

L map to
(sq(s, t) : tq(s, t) : G1(s, t) : G2(s, t)).

Thus we have morphisms

L→ P1 → Γ′

(s : t : 0 : 0) 7→ (s : t) 7→ (sq(s, t) : tq(s, t) : G1(s, t) : G2(s, t)),
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meaning that the smooth points on L map to a smooth component parametrised by

the equation above. We then divide through by the greatest common divisor of the
co-ordinates and the degree of the expression obtained is then the degree of Γ′.

Note that we cannot have everything reducing to a point, since the first two entries
in the parametrisation do not divide one another.

This also gives us a map for the singular points, so the two singular points

on Γ′, P′1 and P′2 (and there must be precisely two, since Γ′ has degree at most
3 and at least 1) are defined to have come from P1 and P2. The isomorphism ρ

is then the morphism above on the smooth points together with ρ(P1) = P′1 and
ρ(P2) = P′2.

�

The following two lemmas explain how to choose co-ordinates in a sensible man-
ner.

Lemma 91 Let (Q1,Q2) be a QI with coefficients in Zp. Suppose L ⊂ C4 is a

line defined over Fp and let P, P1 ∈ C4(Fp) be singular points on L. Then, by

replacing (Q1,Q2) with a Zp-equivalent QI, we may assume that L = {x3 = x4 = 0},
P = (1 : 0 : 0 : 0), P1 = (0 : 1 : 0 : 0) and

(Q1,Q2) = (x2x3 + x4l(x3, x4), x1x4 + f (x3, x4)),

for some quadratic form f and linear form l.

Proo f : Moving the line L and the points P and P1 is just an SL4(Zp) transforma-
tion. Since P is a singular point, an SL2(Zp) transformation can ensure we have

matrices of the form

V1 =


0 0 0 0
0 0 a23 a24

0 a23 2a33 a34

0 a24 a34 2a44

 , V2 =


0 0 b13 b14

0 0 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 .

If p | a23 and a24, then we would have a singular line in the reduction of C4 modulo

p (contradicting multiplicative reduction), so the fact that the point P1 is singular
means that we must be able to add a multiple of V1 to V2 to get p | b23 and b24.

This can be viewed as an SL2(Zp) transformation. Also, without loss of generality,
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p - a23. Now, by adding a multiple of x4 to x3 (or equivalently, by subtracting a

multiple of row (and column) three from row31 (and column) four in the matrices
above), we can ensure p | a24. Rescaling can also ensure a23 = 1, so we have the

following matrices:

V1 =


0 0 0 0
0 0 1 0

0 1 2a33 a34

0 0 a34 2a44

 , V2 =


0 0 b13 b14

0 0 0 0

b13 0 2b33 b34

b14 0 b34 2b44

 .

Now recall the quadratic form q from Lemma 88. In our situation,

q(s, t) = b14st,

so we must have p - b14 to ensure q has two distinct solutions. Then by subtracting

a multiple of row four from row three in the above matrices we get p | b13 and
rescaling can ensure b14 = 1. Finally, subtracting a multiple of row two from row

three gets p | a33 and matrices of the form

V1 =


0 0 0 0

0 0 1 0

0 1 0 a34

0 0 a34 2a44

 , V2 =


0 0 0 1

0 0 0 0

0 0 2b33 b34

1 0 b34 2b44

 .

This then gives equations for (Q1,Q2) of the required form.

�

Lemma 92 Let (Q1,Q2) be a QI with coefficients in Zp. Suppose L ⊂ C4 is a

line defined over Fp and let P ∈ C4(Fp) be a non-regular point on L. Also, let

(Q′1,Q
′
2) = Φ(Q1,Q2, L) and let P′ ∈ C

′
4(Fp) be the image of P under the isomor-

phism ρ in Lemma 90. Then, by replacing (Q1,Q2) with a Zp-equivalent QI, we

may assume that L = {x3 = x4 = 0}, P = (1 : 0 : 0 : 0), P′ = (1 : 0 : 0 : 0) and

Q′i(x1, x2, x3, x4) = 1
p Qi(x1, x2, px3, px4) for i ∈ {1, 2}. By further rearrangement,

we may also assume

(Q1,Q2) = (x2x3 + x4l1(x3, x4), x1x4 + f1(x3, x4)),

31Henceforth, when we refer to a row operation, the corresponding column operation will be
assumed.
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for some quadratic form f1 and linear form l1 and

(Q
′
1,Q

′
2) = (x2x3 + x4l2(x2, x3, x4), x1x4 + f2(x2, x3, x4)),

for some quadratic form f2 and linear form l2.

Proo f : By Lemma 91, we may assume that the other singular point on L is at

(0 : 1 : 0 : 0) and therefore that L and P are of the correct form. Also

V1 =


0 0 0 0
0 0 1 0

0 1 0 a34

0 0 a34 2a44

 , V2 =


0 0 0 1
0 0 0 0

0 0 2b33 b34

1 0 b34 2b44

 ,

giving the correct form for (Q1,Q2). Once L is given by L = {x3 = x4 = 0}, we

have Q′i(x1, x2, x3, x4) = 1
p Qi(x1, x2, px3, px4) for i ∈ {1, 2} by definition. Now

recall that the quadratic form q is given by q(s, t) = st, so the expression for the

isomorphism in Lemma 90 is given by

ρ : L→ Γ′

(s : t : 0 : 0) 7→ (s2t : st2 : G1(s, t) : G2(s, t)).

Recall also that the Gi are given by G1(s, t)
G2(s, t)

 = adj

 a13s + a23t a14s + a24t

b13s + b23t b14s + b24t

  F1(s, t)
F2(s, t)

 ,
for Fi(s, t) = − 1

p Qi(s, t, 0, 0), which reduce in our case to

G1(s, t) = sF1(s, t), G2(s, t) = tF2(s, t).

The point P is non-regular, so p2 | a11 and therefore t | F1(s, t). This means that,
after dividing through by t,

ρ : (1 : 0 : 0 : 0) 7→ (1 : 0 : a′12 : b′11).

By subtracting a multiple of p times row three from row one in the matrices V1 and

V2, we can get p2 | a12 and by subtracting a multiple of p times row four from row
one, we can get p2 | b11. This means we have ρ(P) = (1 : 0 : 0 : 0) as required. It
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remains to check the structure of (Q
′
1,Q

′
2). Currently we have

V
′
1 =


0 0 0 0

0 2a′22 1 0
0 1 0 0

0 0 0 0

 , V
′
2 =


0 b′12 0 1

b′12 2b′22 0 0
0 0 0 0

1 0 0 0

 .

We can see here that subtracting a multiple of row three from row two gets rid of

the 2a′22 and subtracting a multiple of row four from row two gets rid of the b′12.
This amounts to subtracting multiples of p times rows three and four from row two

in the matrices for V1 and V2. This gives the desired form for the transformed QI.

�

Now we will show what happens to the thickness of points under the operation Φ,

which will allow us to prove (1) in Theorem 89.

Lemma 93 (i) Let C4 be a 4-covering given by (Q1,Q2). Suppose C4 contains

a line L defined over Fp and a non-regular point P ∈ C4(Fp) on L. Also let

the transformed QI be given by C′4 = Φ(Q1,Q2, L) with equations (Q′1,Q
′
2) and

suppose P′ ∈ C
′
4(Fp) is the singular point defined by ρ(P) in Lemma 90. Then

τ(P′,Q′1,Q
′
2) = τ(P,Q1,Q2) − 1.

(ii) Let C4 and C′4 be as above, with C4 containing a line L defined over Fp and

singular points P, P1 ∈ C4(Fp) on L. Suppose first that the point P ∈ C4(Fp) is

regular, but that P1 is non-regular. Then the image of L under the map ρ in Lemma

90 is a component of degree 2. If instead both P and P1 are regular, then the image

is a component of degree 3.

Proo f : (i) We have the ideal I = (Q1(1, x2, x3, x4),Q2(1, x2, x3, x4)) in
S = Zp[[x2, x3, x4]] and we would like I to have the structure as in part (2) of

Lemma 84.

Using Lemmas 91 and 92, we may assume P and P′ are at (1 : 0 : 0 : 0) and
L = {x3 = x4 = 0}. By setting x1 = 1, we also have that the ideals generated by the

equations for C4 and C
′
4 have the following structure

I =(x2x3 + x4l1(x3, x4), x4 + f1(x3, x4)),

I
′
=(x2x3 + x4l2(x2, x3, x4), x4 + f2(x2, x3, x4)),
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for some linear forms l1 and l2 and quadratic forms f1 and f2. Now, by a map ϕ

that replaces xi by xi plus higher order terms for i = 2, 3, 4, we get an isomorphism

ϕ :
Fp[[x2, x3, x4]]

(x2x3, x4)
−→
Fp[[x2, x3, x4]]

I
,

which is the desired hypothesis for Lemma 84 part (2). We get a similar isomor-

phism involving I
′
. So choose w, z ∈ S such that

w ≡ ϕ(x2) and z ≡ ϕ(x3)

modulo p. We are assuming P has thickness k > 1, so there exist power series

u, v ∈ S congruent to w and z respectively (using the map ψ in Lemma 84) such
that

u(x2, x3, x4)v(x2, x3, x4) ≡ pk (Q1(1, x2, x3, x4),Q2(1, x2, x3, x4)).

Multiplying the third and fourth coefficients by p and writing (Q1,Q2) in terms of

(Q′1,Q
′
2) means

u(x2, px3, px4)v(x2, px3, px4) ≡ pk (Q1(1, x2, px3, px4),Q2(1, x2, px3, px4)),

u(x2, px3, px4)v(x2, px3, px4) ≡ pk (pQ′1(1, x2, x3, x4), pQ′2(1, x2, x3, x4)).

The line above shows that p | u(x2, px3, px4)v(x2, px3, px4), but p -

u(x2, px3, px4) = x2 + ..., so we must have p | v(x2, px3, px4). Then dividing

through by p means

1
p

u(x2, px3, px4)v(x2, px3, px4) ≡ pk−1 (Q′1(1, x2, x3, x4),Q′2(1, x2, x3, x4)),

so we choose

u′(x2, x3, x4) = u(x2, px3, px4) and v′(x2, x3, x4) =
1
p

v(x2, px3, px4).

Note that since k > 1, we still have u′v′ ≡ 0 mod (p, I′) and (modulo p) we also
have

u′(x2, x3, x4) ≡ x2 + higher order terms,

v′(x2, x3, x4) ≡ λx2 + x3 + higher order terms.
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Thus u′ and v′ generate the maximal ideal in Fp[[x2, x3, x4]]/I
′

and therefore to-

gether with p, they generate the maximal ideal in S/I′. This gives us the hypotheses
of Lemma 84 and therefore we have the isomorphism in Corollary 85

S
I′
�
Zp[[u′, v′]]

(u′v′ − pk−1)
,

showing that the thickness of P′ is k − 1.

(ii) As above, we can use Lemma 91 to get L = {x3 = x4 = 0}, P = (1 : 0 : 0 : 0)
and P1 = (0 : 1 : 0 : 0). The map ρ is given by

ρ : (s : t : 0 : 0) 7→ (s2t : st2 : sF1(s, t) : tF2(s, t)),

but now since P is regular, p - a′11 and therefore t - F1. If P1 is non-regular, then
p | b′22, meaning s | F2 and then the image is parametrised by

(st : t2 : F1(s, t) : t(b11s + b12t)).

There are now no common factors, so this parametrises a component of degree 2.

However, if P1 is regular then F2(s, t) does have a t2 term and then neither s or t is
a common factor of ρ((s : t : 0 : 0)). Therefore in this case L maps to a component

of degree 3.

�

Now let us divert our attention to the map χ.

Lemma 94 Let C4 be a 4-covering given by (Q1,Q2) with coefficients in Zp. Let

P ∈ C4(Fp) be a non-regular point lying on a smooth component Γ ⊂ C4 defined

over Fp and let P1 ∈ C4(Fp) be the other singular point on Γ (if another exists).

Also let the transformed QI be given by C′4 = χ(Q1,Q2, P) with equations (Q′1,Q
′
2).

(i) If the degree d(Γ) > 1 then there exists an isomorphism

ρχ : {R ∈ C4(Qp) : R ∈ Γ \ {P, P1}} 7→ {R′ ∈ C′4(Qp) : R′ ∈ Γ′ \ {P′1, P′2}},

for some component Γ′ ⊂ C
′
4 defined over Fp and singular points P′1, P

′
2 ∈ C4(Fp).

Moreover if d(Γ) = 4 then d(Γ′) = 2 and if 1 < d(Γ) < 4 then d(Γ′) = d(Γ) − 1.
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(ii) If Γ is a line, then all the smooth points on Γ map to a non-regular

point P′1.

Proo f : By an SL4(Zp) transformation, we may assume P = (1 : 0 : 0 : 0). If we

take a general smooth point (x1 : x2 : x3 : x4) ∈ C4(Fp), lift it to a Qp point, apply χ
and reduce it modulo p, we get (0 : x2 : x3 : x4) and this has coprime entries since

we have ruled out x2 = x3 = x4 = 0.

To prove (i), first suppose d(Γ) = 4. Then we can parametrise Γ by four
coprime expressions of degree 4; i.e. (since we have a node) without loss of

generality we can write it as

(s4 + t4 : s3t : s2t2 : st3).

Note that the point P is represented by (s, t) = (1, 0) or (0, 1). Now, after applying

χ, we get
(0 : s3t : s2t2 : st3) = (0 : s2 : st : t2),

which defines a component of degree 2. If d(Γ) = 3, then we can parametrise it by

(s3 : s2t : st2 : t3)

and (s, t) = (1, 0) represents the point P. Applying χ maps the smooth points to

(0 : s2t : st2 : t3) = (0 : s2 : st : t2),

which also defines a component of degree 2. If d(Γ) = 2 and it contains P, then
without loss of generality it is parametrised by

(s2 : st : t2 : 0).

Applying χ maps the smooth points to

(0 : st : t2 : 0) = (0 : s : t : 0),

which defines a line.

(ii) Similarly, if Γ is a line, then all the smooth points map to (0 : 1 : 0 : 0),

which we will refer to as P′1. Lemma 91 shows that we may assume the matrices
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for the QI modulo p are given by

V1 =


0 0 0 0

0 0 1 0
0 1 0 a34

0 0 a34 2a44

 , V2 =


0 0 0 1

0 0 0 0
0 0 2b33 b34

1 0 b34 2b44


and therefore the transformed QI looks like

V
′
1 =


2a
′′
11 a′12 a′13 a′14

a′12 0 1 0
a′13 1 0 a34

a′140 0 a34 2a44

 , V
′
2 =


2b′11 0 0 1

0 0 0 0
0 0 0 0

1 0 0 0

 .

Since p divides the second row and column of V ′2 and p | a22, P′1 has the form of a

singular point. Note that since we had p | b22 and this gets multiplied by p under
χ, we must also have that P′1 is a non-regular point, as required.

�

Lemma 95 Let C4 be a 4-covering given by (Q1,Q2) with coefficients in Zp. Let

P ∈ C4(Fp) be a non-regular point not lying on a smooth component Γ ⊂ C4

defined over Fp and let P1, P2 ∈ C4(Fp) be the two singular points on Γ. Also let

the transformed QI be given by C′4 = χ(Q1,Q2, P) with equations (Q′1,Q
′
2). Then

there exists an isomorphism

ρχ : {R ∈ C4(Qp) : R ∈ Γ \ {P1, P2}} 7→ {R′ ∈ C′4(Qp) : R′ ∈ Γ′ \ {P′1, P′2}},

for some component Γ′ ⊂ C
′
4 defined over Fp of the same degree as Γ and singular

points P′1, P
′
2 ∈ C4(Fp).

Proo f : We may assume P = (1 : 0 : 0 : 0) and then since P < Γ, we can

parametrise Γ as
(0 : f2(s, t) : f3(s, t) : f4(s, t)),

for some expressions fi of degree at most 2. Now, if we lift a smooth point on Γ

to a Qp point, apply χ and reduce modulo p, this has the effect of multiplying the
first co-ordinate by p, therefore the expression for Γ′ is the same as above and the

lemma holds.

�
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The next lemma will ensure our co-ordinates are arranged nicely before we apply

χ.

Lemma 96 Let (Q1,Q2) be a QI with coefficients in Zp. Suppose L ⊂ C4 is a

line defined over Fp and let P ∈ C4(Fp) be a non-regular point on L. Also, let

(Q′1,Q
′
2) = χ(Q1,Q2, P). Then, by replacing (Q1,Q2) with a Zp-equivalent QI, we

may assume that L = {x3 = x4 = 0}, P = (1 : 0 : 0 : 0), and

(Q′1(x1, x2, x3, x4),Q′2(x1, x2, x3, x4))

=

(
1
p2 Q1(x1, px2, px3, px4),

1
p

Q2(x1, px2, px3, px4)
)
.

Also, by further rearrangement,

(Q1,Q2) = (x2x3 + f1(x3, x4), x1x4 + x4l1(x3, x4)),

for some quadratic form f1 and linear form l1 and

(Q
′
1,Q

′
2) = (x2x3 + f2(x1, x3, x4), x1x4),

for some quadratic form f2.

Proo f : By Lemma 91, we may assume that L and P are of the correct form and

that

V1 =


0 0 0 0
0 0 1 0

0 1 0 a34

0 0 a34 2a44

 , V2 =


0 0 0 1
0 0 0 0

0 0 2b33 b34

1 0 b34 2b44

 ,

giving the correct form for (Q1,Q2). Once P is given by (1 : 0 : 0 : 0), we have the
equations for Q′i(x1, x2, x3, x4) for i ∈ {1, 2} by definition. It remains to check the

structure of (Q
′
1,Q

′
2). Currently we have

V
′
1 =


2a
′′
11 a′12 a′13 a′14

a′12 0 1 0

a′13 1 2a33 a34

a′14 0 a34 2a44

 , V
′
2 =


2b′11 0 0 1

0 0 0 0

0 0 0 0
1 0 0 0

 .
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We can see here that subtracting a multiple of row four from row one gets rid of

the 2b′11 and subtracting a multiple of row three from row one gets rid of the a′12.
This amounts to subtracting multiples of p times rows three and four from row one

in the matrices for V1 and V2 and gives us the desired form for the transformed QI.

�

Having arranged the co-ordinates nicely, before we move into a power series argu-
ment, we have a few awkward cases to deal with.

Lemma 97 Let C4 be a 4-covering given by (Q1,Q2) with coefficients in Zp.

Let P ∈ C4(Fp) be a non-regular point and let the transformed QI be given by

C′4 = χ(Q1,Q2, P) with equations (Q′1,Q
′
2).

(i) Let P lie on a component Γ ⊂ C4 defined over Fp of degree 4 and let Γ′

be the image of Γ under ρχ (in the sense of Lemma 94). Then Γ′ contains a

singular point that is regular (not necessarily defined over Fp).

(ii) Let P lie on the intersection of two conics Γ1, Γ2 ⊂ C4 defined over Fp

and let Γ′1,Γ
′
2 be their respective images under ρχ. Then the line Γ′1 contains a

singular point that is regular and does not lie on Γ′2.

Proo f : We may assume P = (1 : 0 : 0 : 0). To prove (i), we know by an SL2(Zp)

transformation we may assume the matrices for the QI modulo p are given by

V1 =


0 0 0 0

0 2a22 a23 a24

0 a23 2a33 a34

0 a24 a34 2a44

 , V2 =


0 b12 b13 b14

b12 2b22 b23 b24

b13 b23 2b33 b34

b14 b24 b34 2b44

 .

Now p does not divide all of b12, b13 and b14, so we may assume b14 = 1 and then

by subtracting multiples of row four from rows two and three, we get p | b12 and
b13. If we can ensure p | a22, then after operating by χ we would have a singular

point at P′1 = (0 : 1 : 0 : 0). It would also be regular, since C4 does not contain a
line (and therefore p - b22).

We are allowed any transformation involving x2, x3 (since that will not af-

fect b12 and b13) to try to get p | a22. It would suffice to find a solution to the
conic

h(x2, x3) = a22x2
2 + a23x2x3 + a33x2

3 = 0,
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since we could move the solution to (x2, x3) = (1, 0) and be done. To see that this

conic does have a solution, let us consider it in affine space, where our QI has the
form

f (x2, x3, x4) = x4 + g(x2, x3, x4) = 0.

If we then take the tangent cone at the origin, we get x4 = f (x2, x3, x4) = 0, i.e
f (x2, x3, 0) = h(x2, x3) = 0 and this conic must have a solution32. Hence p | a22

and we may assume b22 ≡ 1, so C
′
4 contains the regular point P′1. From the proof

of Lemma 94, Γ′ can be parametrised by

(0 : s2 : st : t2),

so P′1 ∈ Γ′ too.

(ii) The intersection of two conics containing P can be parametrised by

(s2 : st : t2 : 0) and (t2 : 0 : s2 : st),

from which we can read off the equations for the QI as

x2x4 = x1x3 − x2
2 − x2

4 = 0.

The matrices for the QI modulo p have the form

V1 =


0 0 0 0
0 0 0 1

0 0 0 0
0 1 0 0

 , V2 =


0 0 1 0
0 −2 0 0

1 0 0 0
0 0 0 −2

 .

After the operation of χ, the components Γ′1 and Γ′2 are given by

(0: s : t : 0) and (0 : 0 : s : t)
32Note that if we have split multiplicative reduction, then these tangents are defined over Fp and

therefore so too is the regular point. This is not the case for non-split reduction.
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and the matrices for C
′
4 modulo p look like

V
′
1 =


2a′′11 a′12 a′13 a′14

a′12 0 0 1
a′13 0 0 0

a14 1 0 0

 , V
′
2 =


2b′11 0 1 0

0 0 0 0
1 0 0 0

0 0 0 0

 .

Therefore the point (0 : 1 : 0 : 0) ∈ C
′
4(Fp) is singular and lies on Γ′1, but not Γ′2. It

is also regular, since p - b22.

�

Lemma 98 Let C4 be a 4-covering given by (Q1,Q2) with coefficients in Zp. Sup-

pose C4 contains a line L defined over Fp. Let P ∈ C4(Fp) be a non-regular point

on L and P1 ∈ C4(Fp) the other singular point on L. Also let the transformed QI

be given by C′4 = χ(Q1,Q2, P) with equations (Q′1,Q
′
2) and let P′1 be the image of

the smooth points on L under the operation ρχ (in the sense of Lemma 94). Then

τ(P′1,Q
′
1,Q

′
2) = τ(P1,Q1,Q2) + 1.

Proo f : Lemma 91 allows us to assume that L is given by {x3 = x4 = 0}, P =

(1 : 0 : 0 : 0), P1 = (0 : 1 : 0 : 0) and Lemma 94 shows that we may assume P′1 =

(0 : 1 : 0 : 0). Lemma 96 shows that working in affine co-ordinates by setting x2 =

1, the ideals generated by the equations for C4(Fp) and C
′
4(Fp) have the following

structure:

I =(x3 + f1(x3, x4), x1x4 + x3l(x3, x4)),

I
′
=(x3 + f2(x1, x3, x4), x1x4),

for some linear form l and quadratic forms f1 and f2. Now, by a map ϕ that replaces

xi by xi plus higher order terms for i = 1, 3, 4, we get an isomorphism

ϕ :
Fp[[x1, x3, x4]]

(x1x4, x3)
−→
Fp[[x1, x3, x4]]

I
′ ,

which is the desired hypothesis for Lemma 84 part (2). We get a similar isomor-
phism involving I. So choose w, z ∈ S = Zp[[x1, x3, x4]] such that

w ≡ ϕ(x1), z ≡ ϕ(x4)
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modulo p. Then, if we assume P′1 has thickness k > 1, there exist power series

u′, v′ ∈ S congruent to w and z respectively such that

u′(x1, x3, x4)v′(x1, x3, x4) ≡ pk (Q′1(x1, 1, x3, x4),Q′2(x1, 1, x3, x4)).

Writing Q′1 and Q′2 in terms of Q1 and Q2 means

u′(x1, x3, x4)v′(x1, x3, x4) ≡ pk
(
Q1

(
x1

p
, 1, x3, x4

)
, pQ2

(
x1

p
, 1, x3, x4

))
.

Therefore, over Fp[[x1, x3, x4]], there exists a power series F such that

u′(px1, x3, x4)v′(px1, x3, x4) = F(px1, x3, x4)Q1(x1, 1, x3, x4).

Now, v′(px1, x3, x4) = x4+ higher order terms and Q1(x1, 1, x3, x4) = x3+ higher

order terms, so they are both irreducible over Fp[[x1, x3, x4]] (which is a unique
factorisation domain). Therefore

u′(px1, x3, x4) = f (px1, x3, x4)Q1(x1, 1, x3, x4) + pu′′(px1, x3, x4),

for some f , u′′ ∈ S . We have the freedom to adjust u′ by multiples of Q1, therefore
we can ensure that p | u′(px1, x3, x4) using the above equation33. Thus we can

write

u′(px1, x3, x4)v′(px1, x3, x4) − pk = F1Q1(x1, 1, x3, x4) + pF2Q2(x1, 1, x3, x4),

for some power series F1 and F2 and p divides the left hand side, so we must have

p | F1. Dividing through by p then means we have

1
p

u′(px1, x3, x4)v′(px1, x3, x4) ≡ pk−1 (Q1(x1, 1, x3, x4),Q2(x1, 1, x3, x4)),

so let us choose

u(x1, x3, x4) =
1
p

u′(px1, x3, x4), v(x1, x3, x4) = v′(px1, x3, x4).

33We replace u′ by pu′′.
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Note k > 1, so we still have uv ≡ 0 mod (p, I) and (modulo p) we also have

u(x1, x3, x4) = x1 + λx3 + µx4 + higher order terms,

v(x1, x3, x4) = x4 + higher order terms.

So u and v are linearly independent and span a space of dimension 2, therefore they

generate the maximal ideal in Fp[[x1, x3, x4]]/I. So, together with p, they generate
the maximal ideal in S/I. This gives the hypothesis of Lemma 84 and therefore the

required isomorphism in Corollary 85

S
I
�
Zp[[u, v]]

(uv − pk−1)
,

showing that the thickness of P1 is k − 1.

�

Proo f o f Theorem 89:

1. Lemma 90 shows

Φ : [a, b, c, d] 7→ [a, ?, ?, ?].

Lemma 93 (i) shows that if d . a − 1 then the thickness of the non-regular
point between components d and a drops by one, i.e.

Φ : [a, b, c, d] 7→ [a, ?, ?, d + 1]

and similarly if b . a + 1 then

Φ : [a, b, c, d] 7→ [a, b − 1, ?, ?].

Lemma 93 (ii) shows that if the point between components d and a is regular

then we see the component a at least twice in the image, i.e.

Φ : [a, b, c, a − 1] 7→ [a, ?, ?, a]

and
Φ : [a, a + 1, c, d] 7→ [a, a, ?, ?].

Therefore we have

Φ : [a, b, c, d] 7→ [a, b − 1, ?, d + 1]
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in all cases and since the sum s = a + b + c + d remains constant, we must

have
Φ : [a, b, c, d] 7→ [a, b − 1, c, d + 1],

as required.

2. Lemma 95 shows that if a , b and c , d then

χ : [a, b, c, d] 7→ [?, b, c, ?].

It also shows that if a , b and b , c then

χ : [a, b, c, c] 7→ [?, b, ?, ?].

Then Lemma 94 shows the following:

χ : [a, a, a, a] 7→[?, a, a, ?],

[a, b, b, b] 7→[?, b, b, ?],

[a, b, c, c] 7→[?, ?, c, ?],

[a, a, b, b] 7→[?, a, b, ?],

for distinct entries a, b and c. Lemma 97 (i) shows that the image of a com-
ponent of degree 4 always contains a regular point, so in fact we know

χ : [a, a, a, a] 7→ [a − 1, a, a, ?] or [?, a, a, a + 1].

Similarly, Lemma 97 (ii) shows that for a , b,

χ : [a, a, b, b] 7→ [a − 1, a, b, ?] or [?, a, b, b + 1].

Now, using Lemma 98, we know that if a , b, then the thickness of the point

between a and b goes up by one under the operation of χ. Therefore, since

we have established that in all cases if a , b that

χ : [a, b, c, d] 7→ [?, b, c, ?],

we have Lemma 98 implies

χ : [a, b, c, d] 7→ [a − 1, b, c, ?].
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We have now determined all but one entry of the bracket in all cases, so

invoking the fact that the sum of the entries remains constant, we must have

χ : [a, b, c, d] 7→ [a − 1, b, c, d + 1],

as required.

3. This is a corollary of the previous part.

�

This gives us an algorithm for getting to a vertex where a can be seen at least 3
times, as described in the following lemma.

Lemma 99 Given P ∈ C4(Qp), there exists a unique minimal QI which is Qp-

equivalent to C4 such that when mapped to this equivalence class, P reduces to a

smooth point on a component of degree at least 3.

Proo f : Let P be on component a in the reduction of C4 and let s be the sum
of the components in the bracket [a, ?, ?, ?] modulo n. Then, we also have the

equivalence class [a, a, a, s − 3a] in the graph of equivalence classes. This can be
reached using the following method.

Applying Φ to the component a will never decrease the degree of that com-

ponent and there is only a finite number of vertices with a occurring once. This
process will not loop, so eventually a will occur with higher multiplicity. If this

only gets us to a conic [a, a, c, d], then ‘flipping’ the (possibly degenerate) conic
cd will not decrease the degree of a and so we eventually see a three times.

�

Lemma 100 Only Zp-equivalence classes of QIs where a component is seen at

least three times need to be considered when computing εp from the graph of equiv-

alence classes.

Proo f : If a point is singular or if it lies on a line or conic, then we must use one

of the operations Φ, χ or χ−1 to compute its contribution.

�
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These equivalence classes are in some sense analogous to the end quartics in

section 2.6, since they have no contribution apart from on the component that
would return us to a previous class.

Note that the above two results also hold for additive reduction, but we

must adjust the definition of the sum.

4.1.2 Application to Reduction Type I4

The theorem in the previous section gives us a toolkit for generating the whole
graph from one starting vertex. Let us illustrate this with the graph for I4 starting

from the equivalence class represented by [0, 0, 0, 0]. Note that since n is even, this
is not the only graph for I4 and there are separate ones for s = 1 and s = 2 (note

the graph for s = 3 is identical to that for s = 1). To assist us, we can write down
all the vertices with s = 0 straight away:

[0, 0, 0, 0], [0, 0, 1, 3], [0, 0, 2, 2], [0, 1, 1, 2], [0, 2, 3, 3],

[1, 1, 1, 1], [1, 1, 3, 3], [1, 2, 2, 3], [2, 2, 2, 2], [3, 3, 3, 3].

From the starting vertex, there is only one possible operation; that is applying χ to

the singular point. Thus

χ : [0, 0, 0, 0] 7→ [3, 0, 0, 1] = [0, 0, 1, 3].

At this new vertex, we have four possible transformations (apart from returning to
the start), the brackets on the left represent the same QI:

[0, 0, 1, 3]
χ−1

7−→ [3, 1, 1, 3] = [1, 1, 3, 3],

[1, 3, 0, 0]
Φ7−→ [1, 2, 0, 1] = [0, 1, 1, 2],

[3, 0, 0, 1]
Φ7−→ [3, 3, 0, 2] = [0, 2, 3, 3],

[3, 0, 0, 1]
χ
7−→ [2, 0, 0, 2] = [0, 0, 2, 2].
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Then continuing with the new vertices until we have found all the possible edges:

[1, 1, 2, 0]
χ−1

7−→ [0, 2, 2, 0] = [0, 0, 2, 2],

[2, 0, 1, 1]
χ−1

7−→ [1, 1, 1, 1],

[2, 0, 1, 1]
Φ7−→ [2, 3, 1, 2] = [1, 2, 2, 3].

[1, 1, 3, 3]
χ−1

7−→ [0, 2, 3, 3],

[3, 3, 1, 1]
χ−1

7−→ [2, 0, 1, 1] = [0, 1, 1, 2],

[3, 3, 1, 1]
χ
7−→ [2, 3, 1, 2] = [1, 2, 2, 3].

[3, 3, 0, 2]
χ−1

7−→ [2, 0, 0, 2] = [0, 0, 2, 2],

[0, 2, 3, 3]
χ−1

7−→ [3, 3, 3, 3],

[2, 3, 3, 0]
Φ7−→ [2, 2, 3, 1] = [1, 2, 2, 3].

[3, 1, 2, 2]
χ−1

7−→ [2, 2, 2, 2],

[1, 2, 2, 3]
χ
7−→ [0, 2, 2, 0] = [0, 0, 2, 2].

This gives us all the edges:
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where lines represent the map Φ and arrows χ.

Now the furthest vertex from [0, 0, 0, 0] is [2, 2, 2, 2] and this means εp would

be p−16 at [0, 0, 0, 0]. However, if we were to search on the QI represented by
[0, 0, 2, 2], then we would actually find εp to be p−8.

It is also worth noting that we can easily derive the graph for cp = 1 or 2

from this. Since n is even, we can have cp = 2, meaning that the Galois action
swaps components 1 and 3. So we have the subgraph of those nodes fixed by

Galois, i.e.

1133

{{wwwwwwww

##G
GGGGGGG

0000 // 0013

##G
GGGGGGG

1223

{{wwwwwwww
2222oo

0022

Here it is best to search on a QI represented by [0, 0, 2, 2], since then εp is only

p−4. In contrast to the graph above for split multiplicative reduction, here we have
a unique vertex which gives the best bound.

We will now include the graphs for s = 2 for split multiplicative reduction:
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and for non-split multiplicative reduction:

0002 0123 0222

Here the best bound we can get is p−4 at vertex [0, 1, 2, 3] for both graphs. For
s = 1 there is no non-split multiplicative case, but the graph for split multiplicative

reduction is

1112

{{wwwwwwww

0001

##G
GGGGGGG

0113 //

GGGGGGGG
0122

wwwwwwww

��

0023

OO wwwwwwww
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0333

;;wwwwwwww

Here the best bound is p−8 at one of the four central vertices.

4.2 Program Output

We have seen above how it is possible to construct a graph of equivalence classes

for multiplicative reduction Im. It is the sort of algorithmic construction that lends
itself nicely to a computer, so we will show the following output from MAGMA.

For m = 1, there is one equivalence class where the component is seen four

times, so the graph is a single vertex and εp = 1.

For m = 2, if the sum s = 0, then there are three equivalence classes and

the graph is a line of three vertices: [0, 0, 0, 0], [0, 0, 1, 1] and [1, 1, 1, 1]. The
contributions εp are given as p−8, p−2 and p−8 respectively. If s = 1, then there are

only two vertices in the graph, both giving εp = p−4.

For m = 3, we get the same graph for each value of s (since m is coprime
to 4). There are five equivalence classes, giving contributions of εp = p−k for

k = 4, 8, 8, 8 and 10 respectively. This is the same as the graph from the naive
example in section 4.1.
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For m = 4, if s = 0, we get the graph in the previous section, so there are
10 vertices and the contributions are εp = p−k for k = 8, 8, 10, 10, 10, 10, 16, 16, 16

and 16. If s = 1 (or 3), we get a graph of 8 vertices with k = 8, 8, 8, 8, 12, 12, 12
and 12 and if s = 2, we get 9 vertices with k = 4, 8, 8, 8, 8, 10, 10, 10 and 10.

The remaining results up to m = 20 are shown in the table below. The

value of εp is given as the k in p−k. We give the best value of k and at how many
vertices this is achieved, as well as the worst value of k. The number of vertices

in the graph is given by N and we can check that summing the values of N for
each value of s gives us the number of brackets [a, b, c, d] for a given m, i.e.

m(m + 1)(m + 2)(m + 3)/24.

m s N Best k Worst k

1 0 1 0(1) 0
2 0 3 2(1) 8

1 2 4(2) 4
3 0 5 4(1) 10

4 0 12 8(2) 16
1 8 8(4) 12

2 9 4(1) 10
5 0 14 8(1) 18

6 0 22 10(2) 24
1 20 10(2) 20

7 0 30 12(3) 26
8 0 43 12(1) 32

1 40 14(4) 28
2 42 12(2) 26

9 0 55 14(2) 34
10 0 73 14(1) 40

1 70 16(2) 36
11 0 91 16(1) 42

m s N Best k Worst k

12 0 116 20(2) 48
1 112 20(4) 44

2 115 16(1) 42
13 0 140 20(1) 50

14 0 172 22(2) 56
1 168 22(2) 52

15 0 204 24(3) 58
16 0 245 24(1) 64

1 240 26(4) 60
2 244 24(2) 58

17 0 285 26(2) 66
18 0 335 26(1) 72

1 330 28(2) 68
19 0 385 28(1) 74

20 0 434 32(2) 80
1 428 32(4) 76

2 425 28(1) 74

The first thing to notice from this table is that there are strong similarities

between m and m + 8 (starting at say m = 4), which suggests that the structure of
the centre of the graph stays roughly the same. It seems to be the case that the best

vertices see four components spaced as evenly as possible round the polygon.
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The best k increases each time we increase m and the relationship seems to
be k ≈ 3m/2, but that is going only by the results above. The worst k never

exceeds 4m, because this is the maximum diameter of the graph; i.e. the distance
from [0, 0, 0, 0] to [m/2,m/2,m/2,m/2] if m is even and s = 034. The diameter is

slightly less for other s or if m is odd.

Overall, this shows that we can make more than a factor of two difference
if we choose our starting equivalence class to be at the centre of these graphs as

opposed to the edge.

We can compare this with our findings at n = 2. We saw that for multi-

plicative reduction, if N is the number of vertices in the graph (all in a line), then
the best bound we can get is k = N − 1 or k = N, depending on the parity of N.

The worst k was 2N, starting at either end of the graph. By consulting Sadek’s
table in [Sad10a], we see that for reduction type Im, N is approximately m/2, so

we are comparing m for binary quartics with 4m for QIs. Now recall that in the
former case, the bound is divided by 4 and in the latter by 8. This means the

bounds we work with are (approximately) only double the size on QIs compared
to binary quartics. So we are definitely better to work with QIs, since there is still

the extra factor of two dividing the height of the point on the elliptic curve. It also
suggests that minimisation becomes even more important for 4-coverings than for

2-coverings.

4.2.1 An Application

Now let us consider a large example and see if any improvements can be made

to point-searching using our knowledge of the structure of these graphs. Let us

consider the elliptic curve (found by Dujella, see [Duj]) given by

E : y2 + xy = x3 − 388378811596246885416503999952510893920x+

2945990928165545330313715541974089080112781497600525427712,

34This is m/2 applications of χ until we have [0,m/2,m/2, 0] followed by m/2 applications of
χ−1 applied to the conic representing the m/2 component to get [m/2,m/2,m/2,m/2]. Counting the
weighted edges, this has distance (6 + 2)m/2 = 4m.

127



which has the following bad primes and reduction types:

2 3 5 7 11 31 47 53 97 193 317 407 601 1033

I16 I8 I4 I8 I8 I8 I8 I4 I2 I2 I8 I4 I2 I2

If we ignore torsion (this has full 2-torsion), then 4-descent yields a set {C4,i} of 28

curves35. On each one, we took the three largest bad primes (409, 601 and 1033)
and constructed their graphs of equivalence classes. We took representatives from

each equivalence class where a component could be seen with degree at least 3
(there are two of these for p = 1033 and 601 and four for 409). We then found

reduced 4-coverings equivalent to each of the 16 combinations that this provides.
This meant that if one of the C4,i contained a point, that point would be smooth at

all of the three primes on at least one of these 16 possibilities.

Only one of the 28 curves produced a point in this manner when we searched up
to H(P) = 106, namely the curve

C4,14 : 121x2
1 + 77696x1x2 + 8340x1x3 + 30221x1x4 + 7568x2

2 + 12177x2x3+

10490x2x4 + 9643x2
3 − 20190x3x4 − 9814x2

4 = 0,

107370x2
1 + 46217x1x2 − 91866x1x3 − 10196x1x4 − 9822x2

2 − 39019x2x3

+ 105777x2x4 − 10375x2
3 − 8198x3x4 − 5908x2

4 = 0.

A search up to H(P) = 108 was needed to find a point on this curve itself:

(−8556741: − 110404787: 142301810: 34455771),

but a point of smaller height was found in one of the other 16 equivalence classes.
We took that equivalence class and then repeated the process with the graphs for

p = 47, 53, 97, 193 and 317, which gave the possibility of the following curve:

15459x1x2 + 10188x1x3 + 24625x1x4 + 1383x2
2 + 470x2x3 + 97728x2x4+

3143x2
3 − 36202x3x4 − 43088x2

4 = 0,

82188x1x2 + 57858x1x3 + 185618x1x4 + 26501x2
2 + 26012x2x3 − 27041x2x4

+ 1351x2
3 + 67613x3x4 + 92512x2

4 = 0.

35I am very grateful to Tom Fisher for sending me the 28 curves. The 4-descent routine on the cur-
rent version of MAGMA was not up to the task for such a large curve and we required a (preliminary)
improved routine which is specific to curves with rational 2-torsion.
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This is in a different Zp-equivalence class for the eight largest bad primes, but is

equivalent over Qp and it contains (by inspection!) the point (1 : 0 : 0 : 0). Both
this point and the one found on C4,14 correspond to the same point on E.

This example demonstrates two things. Firstly that the height of a point can

vary dramatically depending on our choice of 4-covering, so simply minimising
and reducing is not enough to find the best curve to use. Secondly, it shows that

4-descent does not always find the best curve on which to search.

In running this sort of search to find new points, it is a bit impractical to
find the graphs for all the bad primes and then find all the combinations where we

see a component at least three times (for the above example, that would be 232

curves), but by doing so at just the large primes, we certainly save ourselves a lot
of time in actual point-searching.
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5 Conclusion

As a summary, in this thesis we have shown how to compute explicitly a bound
for the height difference between a point on an elliptic curve and its corresponding

point on a 2- or 4-covering. The bounds turned out to be fairly small and in
particular they were better than those achieved by previous methods.

We have shown that it is more important to optimise the bound at the finite
places than at infinity, since these contributions make up the majority of the bound.

For both n = 2 and n = 4, we showed how a graph of Zp-equivalence classes
can be constructed and showed how to find the vertices that would give the best

bounds at each finite place.

This was of particular interest when n = 4 and the elliptic curve had multi-
plicative reduction, since the graphs could become large. We gave the details of

the graphs for reduction type Im for m ≤ 20 in section 4.2. We then used these
ideas to exhibit an application, which improved a search for points on a 4-covering

of large conductor.

5.1 Directions for Further Study

The first task would be to fully implement the calculation of ε2 for QIs. This
should not involve any further theoretical work, but the current routine would have

to be completely overhauled so as to avoid viewing any QIs in matrix form. This
would take some time, but should not be too hard.

Currently, our investigations into the graph of equivalence classes can give

us a ‘best’ single vertex which we should use for a search or a set of cp different
vertices. It might be interesting to investigate the possibility of a compromise;

i.e. if we were only willing to use N vertices to search, for 1 < N < cp, which
would be the best ones? This would involve partitioning the graph and choosing a

representative from each subset of vertices.

The next obvious step would be to attempt to calculate a height bound be-

tween E and 3-coverings. There are good methods for minimising and reducing
ternary cubics, so that would not be a sticking point. We would have to understand

the 3-covering map in detail, whose equations are a little more complicated than
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either the 2-covering map or the 4-to-2-covering map, but not unworkable (indeed

not as intimidating as the full 4-covering map). An analogue of εp would then be
straightforward to define and Theorem 4.2 in [Sad10a] suggests that a graph of

Zp-equivalence classes could be drawn and analysed in a similar way. The bounds
obtained from ternary cubics would not be as powerful as those we have calculated

from QIs, but there may be reasons why the situation would be simpler or easier
to implement on a computer.

The methods we have used could also be applied to 8-coverings, but there

is currently no theory of minimisation for these curves (although I am led to
believe this is on the way), so investigations along these lines would be likely to

run into difficulties at present. However if something were possible, we might

expect the bounds to be not much greater than in the n = 4 case. We saw a
contribution of at most p−m/4 at the n = 2 level becoming at most p−m/2 at the

n = 4 level for multiplicative reduction of type Im, so perhaps we could expect no
worse than p−m for n = 8 if we could minimise and define a graph of equivalence

classes sensibly. Investigations into 3- and 8-coverings could also lead to a
generalisation for higher values of n.

I believe that most of the theory could be generalised to a number field K,

but since so much relies on the descent algorithms, it makes sense to continue over
Q. There is also no real theory of minimisation or reduction over a number field,

which somewhat forces our hand.
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